Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Adv Mater Interfaces ; 9(18): 2102209, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35538926

RESUMEN

Multiplex electronic antigen sensors for detection of SARS-Cov-2 spike glycoproteins and hemagglutinin from influenza A are fabricated using scalable processes for straightforward transition to economical mass-production. The sensors utilize the sensitivity and surface chemistry of a 2D MoS2 transducer for attachment of antibody fragments in a conformation favorable for antigen binding with no need for additional linker molecules. To make the devices, ultra-thin layers (3 nm) of amorphous MoS2 are sputtered over pre-patterned metal electrical contacts on a glass chip at room temperature. The amorphous MoS2 is then laser annealed to create an array of semiconducting 2H-MoS2 transducer regions between metal contacts. The semiconducting crystalline MoS2 region is functionalized with monoclonal antibody fragments complementary to either SARS-CoV-2 S1 spike protein or influenza A hemagglutinin. Quartz crystal microbalance experiments indicate strong binding and maintenance of antigen avidity for antibody fragments bound to MoS2. Electrical resistance measurements of sensors exposed to antigen concentrations ranging from 2-20 000 pg mL-1 reveal selective responses. Sensor architecture is adjusted to produce an array of sensors on a single chip suited for detection of analyte concentrations spanning six orders of magnitude from pg mL-1 to µg mL-1.

2.
Nat Nanotechnol ; 17(2): 182-189, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34857931

RESUMEN

Two-dimensional (2D) crystals have renewed opportunities in design and assembly of artificial lattices without the constraints of epitaxy. However, the lack of thickness control in exfoliated van der Waals (vdW) layers prevents realization of repeat units with high fidelity. Recent availability of uniform, wafer-scale samples permits engineering of both electronic and optical dispersions in stacks of disparate 2D layers with multiple repeating units. Here we present optical dispersion engineering in a superlattice structure comprising alternating layers of 2D excitonic chalcogenides and dielectric insulators. By carefully designing the unit cell parameters, we demonstrate greater than 90% narrow band absorption in less than 4 nm of active layer excitonic absorber medium at room temperature, concurrently with enhanced photoluminescence in square-centimetre samples. These superlattices show evidence of strong light-matter coupling and exciton-polariton formation with geometry-tuneable coupling constants. Our results demonstrate proof of concept structures with engineered optical properties and pave the way for a broad class of scalable, designer optical metamaterials from atomically thin layers.

3.
Small ; 17(42): e2102668, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34541817

RESUMEN

Heterogeneous integration strategies are increasingly being employed to achieve more compact and capable electronics systems for multiple applications including space, electric vehicles, and wearable and medical devices. To enable new integration strategies, the growth and transfer of thin electronic films and devices, including III-nitrides, metal oxides, and 2D materials, using 2D boron nitride (BN)-on-sapphire templates are demonstrated. The van der Waals (vdW) BN layer, in this case, acts as a preferred mechanical release layer for precise separation at the substrate-film interface and leaves a smooth surface suitable for vdW bonding. A tensilely stressed Ni layer sputtered on top of the film induces controlled spalling fracture that propagates at the BN/sapphire interface. By incorporating controlled spalling, the process yield and sensitivity are greatly improved, owed to the greater fracture energy provided by the stressed metal layer relative to a soft tape or rubber stamp. With stress playing a critical role in this process, the influence of residual stress on detrimental cracking and bowing is investigated. Additionally, a back-end selected area lift-off technique is developed which allows for isolation and transfer of individual devices or arbitrary shapes.


Asunto(s)
Electricidad , Electrónica
4.
ACS Nano ; 15(3): 5618-5630, 2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33683881

RESUMEN

The semiconductor-metal junction is one of the most critical factors for high-performance electronic devices. In two-dimensional (2D) semiconductor devices, minimizing the voltage drop at this junction is particularly challenging and important. Despite numerous studies concerning contact resistance in 2D semiconductors, the exact nature of the buried interface under a three-dimensional (3D) metal remains unclear. Herein, we report the direct measurement of electrical and optical responses of 2D semiconductor-metal buried interfaces using a recently developed metal-assisted transfer technique to expose the buried interface, which is then directly investigated using scanning probe techniques. We characterize the spatially varying electronic and optical properties of this buried interface with <20 nm resolution. To be specific, potential, conductance, and photoluminescence at the buried metal/MoS2 interface are correlated as a function of a variety of metal deposition conditions as well as the type of metal contacts. We observe that direct evaporation of Au on MoS2 induces a large strain of ∼5% in the MoS2 which, coupled with charge transfer, leads to degenerate doping of the MoS2 underneath the contact. These factors lead to improvement of contact resistance to record values of 138 kΩ µm, as measured using local conductance probes. This approach was adopted to characterize MoS2-In/Au alloy interfaces, demonstrating contact resistance as low as 63 kΩ µm. Our results highlight that the MoS2/metal interface is sensitive to device fabrication methods and provide a universal strategy to characterize buried contact interfaces involving 2D semiconductors.

5.
ACS Appl Mater Interfaces ; 12(19): 21837-21844, 2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32295338

RESUMEN

Mechanical transfer of high-performing thin-film devices onto arbitrary substrates represents an exciting opportunity to improve device performance, explore nontraditional manufacturing approaches, and paves the way for soft, conformal, and flexible electronics. Using a two-dimensional boron nitride release layer, we demonstrate the transfer of AlGaN/GaN high-electron mobility transistors (HEMTs) to arbitrary substrates through both direct van der Waals bonding and with a polymer adhesive interlayer. No device degradation was observed because of the transfer process, and a significant reduction in device temperature (327-132 °C at 600 mW) was observed when directly bonded to a silicon carbide (SiC) wafer relative to the starting wafer. With the use of a benzocyclobutene (BCB) adhesion interlayer, devices were easily transferred and characterized on Kapton and ceramic films, representing an exciting opportunity for integration onto arbitrary substrates. Upon reduction of this polymer adhesive layer thickness, the AlGaN/GaN HEMTs transferred onto a BCB/SiC substrate resulted in comparable peak temperatures during operation at powers as high as 600 mW to the as-grown wafer, revealing that by optimizing interlayer characteristics such as thickness and thermal conductivity, transferrable devices on polymer layers can still improve performance outputs.

7.
Lab Chip ; 9(1): 122-31, 2009 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-19209344

RESUMEN

We explore textural cues as a mechanism for controlling neuronal process outgrowth in primary cultures of mammalian neurons. The work uses a form of decal transfer lithography to generate arrays of PDMS posts of various dimensions and spacings on glass substrates that are rendered growth-compliant by subsequent treatment with a protein activator. Hippocampal neurons plated on these substrates are used to determine how the posts direct process growth by acting as attachment points or guidance cues. Textural features varying over a large range, even as large as 100 microm in diameter, dramatically affect process growth. Indeed, two growth regimes are observed; at the smaller feature sizes considered, process branching strongly aligns (at right angles) along the post mesh, while neuronal outgrowth on the larger feature sizes elicits process wrapping. The latter behavior most strongly manifests in neurons plated initially at approximately 100 cells/mm(2), where the cells were able to form networks, while for isolated neurons, the cells exhibit poorer viability and development. Bag cell neurons from Aplysia californica also display regular growth patterns, but in this case are guided by contact avoidance of the posts, a behavior qualitatively different than that of the hippocampal neurons.


Asunto(s)
Neuronas/citología , Animales , Aplysia , Células Cultivadas , Hipocampo/citología , Inmunohistoquímica , Microscopía de Fuerza Atómica , Ratas , Ratas Long-Evans
8.
Science ; 323(5921): 1590-3, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19213878

RESUMEN

Flexible, stretchable, and spanning microelectrodes that carry signals from one circuit element to another are needed for many emerging forms of electronic and optoelectronic devices. We have patterned silver microelectrodes by omnidirectional printing of concentrated nanoparticle inks in both uniform and high-aspect ratio motifs with minimum widths of approximately 2 micrometers onto semiconductor, plastic, and glass substrates. The patterned microelectrodes can withstand repeated bending and stretching to large levels of strain with minimal degradation of their electrical properties. With this approach, wire bonding to fragile three-dimensional devices and spanning interconnects for solar cell and light-emitting diode arrays are demonstrated.

9.
Nat Mater ; 7(11): 907-15, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18836435

RESUMEN

The high natural abundance of silicon, together with its excellent reliability and good efficiency in solar cells, suggest its continued use in production of solar energy, on massive scales, for the foreseeable future. Although organics, nanocrystals, nanowires and other new materials hold significant promise, many opportunities continue to exist for research into unconventional means of exploiting silicon in advanced photovoltaic systems. Here, we describe modules that use large-scale arrays of silicon solar microcells created from bulk wafers and integrated in diverse spatial layouts on foreign substrates by transfer printing. The resulting devices can offer useful features, including high degrees of mechanical flexibility, user-definable transparency and ultrathin-form-factor microconcentrator designs. Detailed studies of the processes for creating and manipulating such microcells, together with theoretical and experimental investigations of the electrical, mechanical and optical characteristics of several types of module that incorporate them, illuminate the key aspects.

10.
Langmuir ; 21(22): 10096-105, 2005 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-16229532

RESUMEN

A novel microreactor-based photomask capable of effecting high resolution, large area patterning of UV/ozone (UVO) treatments of poly(dimethylsiloxane) (PDMS) surfaces is described. This tool forms the basis of two new soft lithographic patterning techniques that significantly extend the design rules of decal transfer lithography (DTL). The first technique, photodefined cohesive mechanical failure, fuses the design rules of photolithography with the contact-based adhesive transfer of PDMS in DTL. In a second powerful variation, the UVO masks described in this work enable a masterless soft lithographic patterning process. This latter method, UVO-patterned adhesive transfer, allows the direct transfer of PDMS-based polymer microstructures from a slab of polymer to silicon and other material surfaces. Both methods exploit the improved process qualities that result from the use of a deuterium discharge lamp to affect the UVO treatment to pattern complex, large area PDMS patterns with limiting feature sizes extending well below 1 microm (> or = 0.3 microm). The use of these structures as resists is demonstrated for the patterning of metal thin films. A time-of-flight secondary ion mass spectroscopy study of the process provides new insights into the mechanisms that contribute to the chemistry responsible for the interfacial adhesion of DTL transfers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA