Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Sci ; 40(3): 429-438, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38112960

RESUMEN

Lysozyme (LYS) is a widely used bacteriostatic enzyme. In this paper, we built a sensitive and accurate Raman biosensing platform to detect trace amounts of LYS. The method is based on magnetic spherical nucleic acid formed by a combination of LYS aptamer (Apt) and magnetic beads (MBs). Meanwhile, this method utilizes a dual enzyme-assisted nucleic acid amplification circuit and surface-enhanced Raman scattering (SERS). In this sensing strategy, which is based on the specific recognition of Apt, magnetic spherical nucleic acids were associated with SERS through a nucleic acid amplification circuit, and the low abundance of LYS was converted into a high-specificity Raman signal. Satellite-like MB@AuNPs were formed in the presence of the target, which separated specifically in a magnetic field, effectively avoided the interference of complex sample environment. Under the optimal sensing conditions, the concentration of LYS exhibited a good linear relationship between 1.0 × 10-14 and 5.0 × 10-12 M and the limit of detection was as low as 8.3 × 10-15 M. In addition, the sensor strategy shows excellent accuracy and sensitivity in complex samples, providing a new strategy for the specific detection of LYS.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Ácidos Nucleicos , Muramidasa , Oro , Límite de Detección , Nanopartículas Magnéticas de Óxido de Hierro , Espectrometría Raman/métodos , Técnicas Biosensibles/métodos
2.
Microorganisms ; 10(5)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35630381

RESUMEN

Rhizoplane microbes are considered proxies for evaluating the assemblage stability of the rhizosphere in wetland ecosystems due to their roles in plant growth and ecosystem health. However, our knowledge of how microbial assemblage stability is promoted in the reed rhizosphere of wetlands undergoing recovery is limited. We investigated the assemblage stability, diversity, abundance, co-occurrence patterns, and functional characteristics of reed rhizosphere microbes in restored wetlands. The results indicated that assemblage stability significantly increased with recovery time and that the microbial assemblages were capable of resisting seasonal fluctuations after more than 20 years of restoration. The number of bacterial indicators was greater in the restoration groups with longer restoration periods. Most bacterial indicators appeared in the 30-year restoration group. However, the core taxa and keystone species of module 2 exhibited greater abundance within longer recovery periods and were well organized, with rich and diverse functions that enhanced microbial assemblage stability. Our study provides insight into the connection between the rhizosphere microbiome and recovery period and presents a useful theoretical basis for the empirical management of wetland ecosystems.

3.
Front Chem ; 8: 611, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32793556

RESUMEN

Multifunctional nanocomposites can combine multiple functions into a single nanosystem and thus have attracted extensive interest in various fields. The combination of magnetic and upconversion luminescent nanoparticles into one single nanoplatform, which have a good application in biomedical fields such as bio-magnetic separation, magnetic resonance imaging (MRI), and optical imaging, is highly desirable. Here we reported multifunctional nanocomposites by using hollow carbon sphere to integrate magnetic Fe3O4 and upconversion nanoparticles (UCNPs) into one nanosystem. The as-prepared UCNPs/Fe3O4@h-C have near-infrared (NIR) luminescence under 980 nm excitation and superparamagnetism. In addition, since the carbon layer can absorb NIR light and transfer it into heat with high efficiency, the nanocomposites can realize photo thermal (PT), upconversion luminescence (UCL) and MRI tri-mode imaging. The UCNPs/Fe3O4@h-C might be further utilized as a potential theranostic agent, including its in-depth monitoring through luminescent imaging and MRI diagnosis, as well as its direct use in tumors as a photothermal therapy (PTT) agent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA