Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Synth Biol ; 11(5): 1919-1930, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35511588

RESUMEN

Development of a new generation of vaccines is a key challenge for the control of infectious diseases affecting both humans and animals. Synthetic biology methods offer new ways to engineer bacterial chassis that can be used as vectors to present heterologous antigens and train the immune system against pathogens. Here, we describe the construction of a bacterial chassis based on the fast-growing Mycoplasma feriruminatoris, and the first steps toward its application as a live vaccine against contagious caprine pleuropneumonia (CCPP). To do so, the M. feriruminatoris genome was cloned in yeast, modified by iterative cycles of Cas9-mediated deletion of loci encoding virulence factors, and transplanted back in Mycoplasma capricolum subsp. capricolum recipient cells to produce the designed M. feriruminatoris chassis. Deleted genes encoded the glycerol transport and metabolism systems GtsABCD and GlpOKF and the Mycoplasma Ig binding protein-Mycoplasma Ig protease (MIB-MIP) immunoglobulin cleavage system. Phenotypic assays of the M. feriruminatoris chassis confirmed the corresponding loss of H2O2 production and IgG cleavage activities, while growth remained unaltered. The resulting mycoplasma chassis was further evaluated as a platform for the expression of heterologous surface proteins. A genome locus encoding an inactivated MIB-MIP system from the CCPP-causative agent Mycoplasma capricolum subsp. capripneumoniae was grafted in replacement of its homolog at the original locus in the chassis genome. Both heterologous proteins were detected in the resulting strain using proteomics, confirming their expression. This study demonstrates that advanced genome engineering methods are henceforth available for the fast-growing M. feriruminatoris, facilitating the development of novel vaccines, in particular against major mycoplasma diseases.


Asunto(s)
Cabras , Mycoplasma , Animales , Cabras/microbiología , Peróxido de Hidrógeno , Mycoplasma/genética
2.
PeerJ ; 8: e9291, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32566401

RESUMEN

Restriction site Associated DNA Sequencing (RAD-Seq) is a technique characterized by the sequencing of specific loci along the genome that is widely employed in the field of evolutionary biology since it allows to exploit variants (mainly Single Nucleotide Polymorphism-SNPs) information from entire populations at a reduced cost. Common RAD dedicated tools, such as STACKS or IPyRAD, are based on all-vs-all read alignments, which require consequent time and computing resources. We present an original method, DiscoSnp-RAD, that avoids this pitfall since variants are detected by exploiting specific parts of the assembly graph built from the reads, hence preventing all-vs-all read alignments. We tested the implementation on simulated datasets of increasing size, up to 1,000 samples, and on real RAD-Seq data from 259 specimens of Chiastocheta flies, morphologically assigned to seven species. All individuals were successfully assigned to their species using both STRUCTURE and Maximum Likelihood phylogenetic reconstruction. Moreover, identified variants succeeded to reveal a within-species genetic structure linked to the geographic distribution. Furthermore, our results show that DiscoSnp-RAD is significantly faster than state-of-the-art tools. The overall results show that DiscoSnp-RAD is suitable to identify variants from RAD-Seq data, it does not require time-consuming parameterization steps and it stands out from other tools due to its completely different principle, making it substantially faster, in particular on large datasets.

3.
Brain ; 142(1): 35-49, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30508070

RESUMEN

Holoprosencephaly is a pathology of forebrain development characterized by high phenotypic heterogeneity. The disease presents with various clinical manifestations at the cerebral or facial levels. Several genes have been implicated in holoprosencephaly but its genetic basis remains unclear: different transmission patterns have been described including autosomal dominant, recessive and digenic inheritance. Conventional molecular testing approaches result in a very low diagnostic yield and most cases remain unsolved. In our study, we address the possibility that genetically unsolved cases of holoprosencephaly present an oligogenic origin and result from combined inherited mutations in several genes. Twenty-six unrelated families, for whom no genetic cause of holoprosencephaly could be identified in clinical settings [whole exome sequencing and comparative genomic hybridization (CGH)-array analyses], were reanalysed under the hypothesis of oligogenic inheritance. Standard variant analysis was improved with a gene prioritization strategy based on clinical ontologies and gene co-expression networks. Clinical phenotyping and exploration of cross-species similarities were further performed on a family-by-family basis. Statistical validation was performed on 248 ancestrally similar control trios provided by the Genome of the Netherlands project and on 574 ancestrally matched controls provided by the French Exome Project. Variants of clinical interest were identified in 180 genes significantly associated with key pathways of forebrain development including sonic hedgehog (SHH) and primary cilia. Oligogenic events were observed in 10 families and involved both known and novel holoprosencephaly genes including recurrently mutated FAT1, NDST1, COL2A1 and SCUBE2. The incidence of oligogenic combinations was significantly higher in holoprosencephaly patients compared to two control populations (P < 10-9). We also show that depending on the affected genes, patients present with particular clinical features. This study reports novel disease genes and supports oligogenicity as clinically relevant model in holoprosencephaly. It also highlights key roles of SHH signalling and primary cilia in forebrain development. We hypothesize that distinction between different clinical manifestations of holoprosencephaly lies in the degree of overall functional impact on SHH signalling. Finally, we underline that integrating clinical phenotyping in genetic studies is a powerful tool to specify the clinical relevance of certain mutations.


Asunto(s)
Holoprosencefalia/genética , Herencia Multifactorial/genética , Enfermedades Raras/genética , Estudios de Casos y Controles , Hibridación Genómica Comparativa , Exoma/genética , Femenino , Humanos , Masculino , Mutación , Linaje , Fenotipo
4.
Hum Mutat ; 37(12): 1329-1339, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27363716

RESUMEN

Holoprosencephaly (HPE) is the most common congenital cerebral malformation in humans, characterized by impaired forebrain cleavage and midline facial anomalies. It presents a high heterogeneity, both in clinics and genetics. We have developed a novel targeted next-generation sequencing (NGS) assay and screened a cohort of 257 HPE patients. Mutations with high confidence in their deleterious effect were identified in approximately 24% of the cases and were held for diagnosis, whereas variants of uncertain significance were identified in 10% of cases. This study provides a new classification of genes that are involved in HPE. SHH, ZIC2, and SIX3 remain the top genes in term of frequency with GLI2, and are followed by FGF8 and FGFR1. The three minor HPE genes identified by our study are DLL1, DISP1, and SUFU. Here, we demonstrate that fibroblast growth factor signaling must now be considered a major pathway involved in HPE. Interestingly, several cases of double mutations were found and argue for a polygenic inheritance of HPE. Altogether, it supports that the implementation of NGS in HPE diagnosis is required to improve genetic counseling.


Asunto(s)
Factores de Crecimiento de Fibroblastos/genética , Holoprosencefalia/genética , Mutación , Femenino , Predisposición Genética a la Enfermedad , Proteínas Hedgehog/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Masculino , Receptor Tipo 1 de Factor de Crecimiento de Fibroblastos , Análisis de Secuencia de ADN/métodos , Transducción de Señal
5.
PLoS One ; 10(2): e0117418, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25658757

RESUMEN

Holoprosencephaly (HPE) is a frequent congenital malformation of the brain characterized by impaired forebrain cleavage and midline facial anomalies. Heterozygous mutations in 14 genes have been identified in HPE patients that account for only 30% of HPE cases, suggesting the existence of other HPE genes. Data from homozygosity mapping and whole-exome sequencing in a consanguineous Turkish family were combined to identify a homozygous missense mutation (c.2150G>A; p.Gly717Glu) in STIL, common to the two affected children. STIL has a role in centriole formation and has previously been described in rare cases of microcephaly. Rescue experiments in U2OS cells showed that the STIL p.Gly717Glu mutation was not able to fully restore the centriole duplication failure following depletion of endogenous STIL protein indicating the deleterious role of the mutation. In situ hybridization experiments using chick embryos demonstrated that expression of Stil was in accordance with a function during early patterning of the forebrain. It is only the second time that a STIL homozygous mutation causing a recessive form of HPE was reported. This result also supports the genetic heterogeneity of HPE and increases the panel of genes to be tested for HPE diagnosis.


Asunto(s)
Holoprosencefalia/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Animales , Encéfalo/diagnóstico por imagen , Línea Celular , Centriolos , Embrión de Pollo , Pollos/metabolismo , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Holoprosencefalia/patología , Homocigoto , Humanos , Hibridación in Situ , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Imagen por Resonancia Magnética , Masculino , Microcefalia/patología , Mutación Missense , Prosencéfalo/metabolismo , Radiografía , Hermanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...