Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Metab ; 34(10): 1532-1547.e6, 2022 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-36198294

RESUMEN

The hypothalamus is key in the control of energy balance. However, strategies targeting hypothalamic neurons have failed to provide viable options to treat most metabolic diseases. Conversely, the role of astrocytes in systemic metabolic control has remained largely unexplored. Here, we show that obesity promotes anatomically restricted remodeling of hypothalamic astrocyte activity. In the paraventricular nucleus (PVN) of the hypothalamus, chemogenetic manipulation of astrocytes results in bidirectional control of neighboring neuron activity, autonomic outflow, glucose metabolism, and energy balance. This process recruits a mechanism involving the astrocytic control of ambient glutamate levels, which becomes defective in obesity. Positive or negative chemogenetic manipulation of PVN astrocyte Ca2+ signals, respectively, worsens or improves metabolic status of diet-induced obese mice. Collectively, these findings highlight a yet unappreciated role for astrocytes in the direct control of systemic metabolism and suggest potential targets for anti-obesity strategy.


Asunto(s)
Astrocitos , Hipotálamo , Animales , Astrocitos/metabolismo , Metabolismo Energético/fisiología , Glucosa/metabolismo , Ácido Glutámico/metabolismo , Hipotálamo/metabolismo , Ratones , Obesidad/metabolismo , Núcleo Hipotalámico Paraventricular/metabolismo
2.
Curr Biol ; 31(20): 4584-4595.e4, 2021 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-34478646

RESUMEN

In the developing central nervous system, electrical signaling is thought to rely exclusively on differentiating neurons as they acquire the ability to generate and propagate action potentials. Accordingly, neuroepithelial progenitors (NEPs), which give rise to all neurons and glial cells during development, have been reported to remain electrically passive. Here, we investigated the physiological properties of NEPs at the onset of spontaneous neural activity (SNA) initiating motor behavior in mouse embryonic spinal cord. Using patch-clamp recordings, we discovered that spinal NEPs exhibit spontaneous membrane depolarizations during episodes of SNA. These rhythmic depolarizations exhibited a ventral-to-dorsal gradient with the highest amplitude located in the floor plate, the ventral-most part of the neuroepithelium. Paired recordings revealed that NEPs are coupled via gap junctions and form an electrical syncytium. Although other NEPs were electrically passive, we discovered that floor-plate NEPs generated large Na+/Ca2+ action potentials. Unlike in neurons, floor-plate action potentials relied primarily on the activation of voltage-gated T-type calcium channels (TTCCs). In situ hybridization showed that all 3 known subtypes of TTCCs are predominantly expressed in the floor plate. During SNA, we found that acetylcholine released by motoneurons rhythmically triggers floor-plate action potentials by acting through nicotinic acetylcholine receptors. Finally, by expressing the genetically encoded calcium indicator GCaMP6f in the floor plate, we demonstrated that neuroepithelial action potentials are associated with calcium waves and propagate along the entire length of the spinal cord. Our work reveals a novel physiological mechanism to generate and propagate electrical signals across a neural structure independently from neurons.


Asunto(s)
Neuronas Motoras , Médula Espinal , Potenciales de Acción/fisiología , Animales , Canales de Calcio , Uniones Comunicantes , Ratones , Neuronas Motoras/fisiología , Médula Espinal/fisiología
3.
Elife ; 102021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33899737

RESUMEN

Renshaw cells (V1R) are excitable as soon as they reach their final location next to the spinal motoneurons and are functionally heterogeneous. Using multiple experimental approaches, in combination with biophysical modeling and dynamical systems theory, we analyzed, for the first time, the mechanisms underlying the electrophysiological properties of V1R during early embryonic development of the mouse spinal cord locomotor networks (E11.5-E16.5). We found that these interneurons are subdivided into several functional clusters from E11.5 and then display an unexpected transitory involution process during which they lose their ability to sustain tonic firing. We demonstrated that the essential factor controlling the diversity of the discharge pattern of embryonic V1R is the ratio of a persistent sodium conductance to a delayed rectifier potassium conductance. Taken together, our results reveal how a simple mechanism, based on the synergy of two voltage-dependent conductances that are ubiquitous in neurons, can produce functional diversity in embryonic V1R and control their early developmental trajectory.


Asunto(s)
Potenciales de Acción , Canales de Potasio de Tipo Rectificador Tardío/metabolismo , Potasio/metabolismo , Células de Renshaw/metabolismo , Canales de Sodio/metabolismo , Sodio/metabolismo , Médula Espinal/metabolismo , Animales , Femenino , Glutamato Descarboxilasa/genética , Proteínas Fluorescentes Verdes/genética , Masculino , Ratones Transgénicos , Modelos Neurológicos , Morfogénesis , Fenotipo , Médula Espinal/embriología , Teoría de Sistemas , Factores de Tiempo
4.
Neuroimage ; 220: 117069, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32585347

RESUMEN

Astrocytes are a major type of glial cell in the mammalian brain, essentially regulating neuronal development and function. Quantitative imaging represents an important approach to study astrocytic signaling in neural circuits. Focusing on astrocytic Ca2+ activity, a key pathway implicated in astrocye-neuron interaction, we here report a strategy combining fast light sheet fluorescence microscopy (LSFM) and correlative screening-based time series analysis, to map activity domains in astrocytes in living mammalian nerve tissue. Light sheet of micron-scale thickness enables wide-field optical sectioning to image astrocytes in acute mouse brain slices. Using both chemical and genetically encoded Ca2+ indicators, we demonstrate the complementary advantages of LSFM in mapping Ca2+ domains in astrocyte populations as compared to epifluorescence and two-photon microscopy. Our approach then revealed distinct kinetics of Ca2+ signals between cortical and hypothalamic astrocytes in resting conditions and following the activation of adrenergic G protein coupled receptor (GPCR). This observation highlights the activity heterogeneity across regionally distinct astrocyte populations, and indicates the potential of our method for investigating dynamic signals in astrocytes.


Asunto(s)
Astrocitos/fisiología , Encéfalo/fisiología , Señalización del Calcio/fisiología , Calcio/metabolismo , Animales , Ratones , Microscopía Fluorescente , Neuronas/fisiología
5.
Glia ; 66(11): 2470-2486, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252950

RESUMEN

Microglia are known to regulate several aspects of the development of the central nervous system. When microglia colonize the spinal cord, from E11.5 in the mouse embryo, they interact with growing central axons of dorsal root ganglion sensory neurons (SNs), which suggests that they may have some functions in SN development. To address this issue, we analyzed the effects of embryonic macrophage ablation on the early development of SNs using mouse embryo lacking embryonic macrophages (PU.1 knock-out mice) and immune cell ablation. We discovered that, in addition to microglia, embryonic macrophages contact tropomyosin receptor kinase (Trk) C+ SN, TrkB+ SN, and TrkA+ SN peripheral neurites from E11.5. Deprivation of immune cells resulted in an initial reduction of TrkC+ SN and TrkB+ SN populations at E11.5 that was unlikely to be related to an alteration in their developmental cell death (DCD), followed by a transitory increase in their number at E12.5. It also resulted in a reduction of TrkA+ SN number during the developmental period analyzed (E11.5-E15.5), although we did not observe any change in their DCD. Proliferation of cells negative for brain fatty acid-binding protein (BFABP- ), which likely correspond to neuronal progenitors, was increased at E11.5, while their proliferation was decreased at E12.5, which could partly explain the alterations of SN subtype production observed from E11.5. In addition, we observed alterations in the proliferation of glial cell progenitors (BFABP+ cells) in the absence of embryonic macrophages. Our data indicate that embryonic macrophages and microglia ablation alter the development of SNs.


Asunto(s)
Ganglios Espinales/citología , Regulación del Desarrollo de la Expresión Génica/fisiología , Macrófagos/metabolismo , Microglía/metabolismo , Células Receptoras Sensoriales/fisiología , Animales , Proteínas de Unión al Calcio/metabolismo , Muerte Celular , Citocinas/metabolismo , Embrión de Mamíferos , Femenino , Galectina 3/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígeno Ki-67/metabolismo , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Receptores de Interleucina-8A/genética , Receptores de Interleucina-8A/metabolismo , Receptores de Factor de Crecimiento Nervioso/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Tubulina (Proteína)/metabolismo
6.
J Neurosci ; 38(35): 7667-7682, 2018 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-30012693

RESUMEN

Spontaneous network activity (SNA) emerges in the spinal cord (SC) before the formation of peripheral sensory inputs and central descending inputs. SNA is characterized by recurrent giant depolarizing potentials (GDPs). Because GDPs in motoneurons (MNs) are mainly evoked by prolonged release of GABA, they likely necessitate sustained firing of interneurons. To address this issue we analyzed, as a model, embryonic Renshaw cell (V1R) activity at the onset of SNA (E12.5) in the embryonic mouse SC (both sexes). V1R are one of the interneurons known to contact MNs, which are generated early in the embryonic SC. Here, we show that V1R already produce GABA in E12.5 embryo, and that V1R make synaptic-like contacts with MNs and have putative extrasynaptic release sites, while paracrine release of GABA occurs at this developmental stage. In addition, we discovered that V1R are spontaneously active during SNA and can already generate several intrinsic activity patterns including repetitive-spiking and sodium-dependent plateau potential that rely on the presence of persistent sodium currents (INap). This is the first demonstration that INap is present in the embryonic SC and that this current can control intrinsic activation properties of newborn interneurons in the SC of mammalian embryos. Finally, we found that 5 µm riluzole, which is known to block INaP, altered SNA by reducing episode duration and increasing inter-episode interval. Because SNA is essential for neuronal maturation, axon pathfinding, and synaptogenesis, the presence of INaP in embryonic SC neurons may play a role in the early development of mammalian locomotor networks.SIGNIFICANCE STATEMENT The developing spinal cord (SC) exhibits spontaneous network activity (SNA) involved in the building of nascent locomotor circuits in the embryo. Many studies suggest that SNA depends on the rhythmic release of GABA, yet intracellular recordings of GABAergic neurons have never been performed at the onset of SNA in the SC. We first discovered that embryonic Renshaw cells (V1R) are GABAergic at E12.5 and spontaneously active during SNA. We uncover a new role for persistent sodium currents (INaP) in driving plateau potential in V1R and in SNA patterning in the embryonic SC. Our study thus sheds light on a role for INaP in the excitability of V1R and the developing SC.


Asunto(s)
Neuronas GABAérgicas/fisiología , Red Nerviosa/fisiología , Células de Renshaw/fisiología , Canales de Sodio/fisiología , Sodio/fisiología , Médula Espinal/embriología , Potenciales de Acción , Animales , Antagonistas de Aminoácidos Excitadores/farmacología , Femenino , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/citología , Comunicación Paracrina , Técnicas de Placa-Clamp , Riluzol/farmacología , Médula Espinal/citología , Sinapsis/fisiología
7.
Glia ; 66(8): 1678-1694, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29603384

RESUMEN

Virtually all oligodendrocyte precursors cells (OPCs) receive glutamatergic and/or GABAergic synapses that are lost upon their differentiation into oligodendrocytes in the postnatal and adult brain. Although OPCs are generated at mid-embryonic stages, several weeks before the onset of myelination, it remains unknown when and where OPCs receive their first synapses and become susceptible to the influence of neuronal activity. In the embryonic spinal cord, neuro-epithelial precursors in the pMN domain cease generating cholinergic motor neurons (MNs) to produce OPCs when the first synapses are formed in the ventral-lateral marginal zone. We discovered that when the first synapses form onto MNs, axoglial synapses also form onto the processes of neuro-epithelial precursors located in the marginal zone as they differentiate into OPCs. After leaving the neuro-epithelium, these pioneer OPCs preferentially accumulate in the marginal zone where they are contacted by functional glutamatergic and GABAergic synapses. Spontaneous activity of these axoglial synapses was significantly potentiated by cholinergic signaling acting through presynaptic nicotinic acetylcholine receptors. Moreover, we discovered that chronic nicotine treatment significantly increases early OPC proliferation and density in the marginal zone. Our results demonstrate that OPCs are contacted by functional synapses as soon as they emerge from their precursor domain and that embryonic spinal cord colonization by OPCs can be regulated by cholinergic signaling acting onto these axoglial synapses.


Asunto(s)
Axones/metabolismo , Células Precursoras de Oligodendrocitos/citología , Oligodendroglía/metabolismo , Sinapsis/patología , Animales , Diferenciación Celular/fisiología , Ratones , Neuronas Motoras/metabolismo , Neurogénesis/fisiología , Médula Espinal/metabolismo , Células Madre/fisiología , Sinapsis/fisiología
8.
Biomaterials ; 138: 91-107, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28554011

RESUMEN

Recovery from traumatic spinal cord injury (SCI) usually fails due to a cascade of cellular and molecular events that compromise neural tissue reconstitution by giving rise to glial scarring and cavity formation. We designed a scaffold material for SCI treatment containing only chitosan and water as fragmented physical hydrogel suspension (Chitosan-FPHS), with defined degree of acetylation (DA), polymer concentration, and mean fragment size. Implantation of Chitosan-FPHS alone into rat spinal cord immediately after a bilateral dorsal hemisection promoted reconstitution of spinal tissue and vasculature, and diminished fibrous glial scarring: with astrocyte processes primarily oriented towards the lesion, the border between lesion site and intact tissue became permissive for regrowth of numerous axons into, and for some even beyond the lesion site. Growing axons were myelinated or ensheathed by endogenous Schwann cells that migrated into the lesion site and whose survival was prolonged. Interestingly, Chitosan-FPHS also modulated the inflammatory response, and we suggest that this might contribute to tissue repair. Finally, this structural remodeling was associated with significant, long-lasting gain in locomotor function recovery. Because it effectively induces neural tissue repair, Chitosan-FPHS biomaterial may be a promising new approach to treat SCI, and a suitable substrate to combine with other strategies.


Asunto(s)
Axones/fisiología , Quitosano/uso terapéutico , Hidrogel de Polietilenoglicol-Dimetacrilato/uso terapéutico , Regeneración Nerviosa , Traumatismos de la Médula Espinal/terapia , Andamios del Tejido , Animales , Axones/efectos de los fármacos , Materiales Biocompatibles/farmacología , Materiales Biocompatibles/uso terapéutico , Quitosano/farmacología , Cicatriz/terapia , Femenino , Hidrogel de Polietilenoglicol-Dimetacrilato/farmacología , Locomoción , Vaina de Mielina/fisiología , Regeneración Nerviosa/efectos de los fármacos , Ratas , Ratas Wistar , Recuperación de la Función , Células de Schwann/fisiología , Agua/química
9.
J Neurosci ; 34(18): 6389-404, 2014 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-24790209

RESUMEN

A remarkable feature of early neuronal networks is their endogenous ability to generate spontaneous rhythmic electrical activity independently of any external stimuli. In the mouse embryonic SC, this activity starts at an embryonic age of ∼ 12 d and is characterized by bursts of action potentials recurring every 2-3 min. Although these bursts have been extensively studied using extracellular recordings and are known to play an important role in motoneuron (MN) maturation, the mechanisms driving MN activity at the onset of synaptogenesis are still poorly understood. Because only cholinergic antagonists are known to abolish early spontaneous activity, it has long been assumed that spinal cord (SC) activity relies on a core network of MNs synchronized via direct cholinergic collaterals. Using a combination of whole-cell patch-clamp recordings and extracellular recordings in E12.5 isolated mouse SC preparations, we found that spontaneous MN activity is driven by recurrent giant depolarizing potentials. Our analysis reveals that these giant depolarizing potentials are mediated by the activation of GABA, glutamate, and glycine receptors. We did not detect direct nAChR activation evoked by ACh application on MNs, indicating that cholinergic inputs between MNs are not functional at this age. However, we obtained evidence that the cholinergic dependency of early SC activity reflects a presynaptic facilitation of GABA and glutamate synaptic release via nicotinic AChRs. Our study demonstrates that, even in its earliest form, the activity of spinal MNs relies on a refined poly-synaptic network and involves a tight presynaptic cholinergic regulation of both GABAergic and glutamatergic inputs.


Asunto(s)
Acetilcolina/metabolismo , Potenciales de Acción/fisiología , Uniones Comunicantes/fisiología , Ácido Glutámico/metabolismo , Glicina/metabolismo , Neuronas Motoras/fisiología , Red Nerviosa/fisiología , Médula Espinal/citología , Ácido gamma-Aminobutírico/metabolismo , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Colinérgicos/farmacología , Embrión de Mamíferos , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Femenino , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Ácido Glutámico/farmacología , Glicina/farmacología , Proteínas de Homeodominio/genética , Técnicas In Vitro , Ratones , Ratones Transgénicos , Neuronas Motoras/efectos de los fármacos , Red Nerviosa/efectos de los fármacos , Embarazo , Tetrodotoxina/farmacología , Factores de Transcripción/genética , Ácido gamma-Aminobutírico/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...