Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 139
Filtrar
1.
JCI Insight ; 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722688

RESUMEN

Applying advanced molecular profiling together with highly specific targeted therapies offers the possibility to better dissect the mechanisms underlying immune mediated inflammatory diseases such as systemic lupus erythematosus (SLE) in humans. Here we apply a combination of single cell RNA sequencing and T/B cell repertoire analysis to perform an in-depth characterization of molecular changes in the immune-signature upon CD19 CAR T cell-mediated depletion of B cells in SLE patients. The resulting datasets do not only confirm a selective CAR T cell-mediated reset of the B cell response, but simultaneously reveal consequent changes in the transcriptional signature of monocyte and T cell subsets that respond with a profound reduction in type 1 interferon signaling. Our current data thus provide evidence for a causal relationship between the B cell response and the increased interferon signature observed in SLE and additionally demonstrate the usefulness of combining targeted therapies and novel analytic approaches to decipher molecular mechanisms of immune-mediated inflammatory diseases in humans.

2.
Neuron ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38697115

RESUMEN

Myasthenia gravis (MG) and Lambert-Eaton myasthenic syndrome (LEMS) are autoimmune disorders affecting neuromuscular transmission. Their combined occurrence is rare, and treatment remains challenging. Two women diagnosed with concomitant MG/LEMS experienced severe, increasing disease activity despite multiple immunotherapies. Anti-CD19 chimeric antigen receptor (CAR) T cells have shown promise for treating autoimmune diseases. This report details the safe application of anti-CD19 CAR T cells for treating concomitant MG/LEMS. After CAR T cell therapy, both patients experienced rapid clinical recovery and regained full mobility. Deep B cell depletion and normalization of acetylcholine receptor and voltage-gated calcium channel N-type autoantibody levels paralleled major neurological responses. Within 2 months, both patients returned to everyday life, from wheelchair dependency to bicycling and mountain hiking, and remain stable at 6 and 4 months post-CAR T cell infusion, respectively. This report highlights the potential for anti-CD19 CAR T cells to achieve profound clinical effects in the treatment of neuroimmunological diseases.

3.
Clin Nutr ESPEN ; 61: 274-280, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38777443

RESUMEN

OBJECTIVE: Allogeneic hematopoietic stem cell transplantation (allo-HSCT) represents the only curative treatment option for several hematological neoplasms. This study aimed to assess the parameters of body composition as predictors of post-transplant overall survival (OS) and adverse events in patients with leukemia, myelodysplastic syndromes (MDS), and myeloproliferative neoplasms (MPN). METHODS: This was a retrospective study of 122 adult patients who underwent their first allo-HSCT. The CT-based semi-automated measurement of subcutaneous adipose tissue (SAT), visceral adipose tissue (VAT), visceral-to-subcutaneous fat ratio (VSR), sarcopenia in terms of skeletal muscle index (SMI), and myosteatosis based on the skeletal muscle radiation attenuation (SM-RA) was performed. Cox regression analysis was used to assess the association of body composition parameters with OS. RESULTS: In the univariate analysis, low SAT and myosteatosis were associated with lower OS (hazard ratio [HR] 2.02, 95% confidence interval [CI] 1.16-3.51, p = 0.01) and (HR 2.50, 95% CI 1.48-4.25, p =< 0.001), respectively. This association remained significant after adjusting for relevant covariates, with HR 2.32, 95% CI 1.23-4.38, p = 0.01 and HR 2.86, 95% CI 1.51-5.43, p =< 0.001, respectively. On the contrary, VAT, VSR, sarcopenia, and sarcopenic obesity were not statistically significant in OS. Severe post-transplant adverse events were more common in the low SAT group (odds ratio [OR] 3.12, 95% CI 1.32-7.40, p = 0.01) and OR 3.17, 95% CI 1.31-7.70, p =< 0.01 in the age- and sex-adjusted analysis. CONCLUSION: Low SAT and myosteatosis may contribute to an increased risk of post-transplant mortality, while low SAT appears to increase the risk of severe post-transplant adverse events.


Asunto(s)
Composición Corporal , Trasplante de Células Madre Hematopoyéticas , Grasa Subcutánea , Humanos , Masculino , Femenino , Estudios Retrospectivos , Persona de Mediana Edad , Adulto , Pronóstico , Sarcopenia , Anciano , Trasplante Homólogo , Músculo Esquelético , Grasa Intraabdominal , Adulto Joven
4.
Lancet Neurol ; 23(6): 615-624, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38760099

RESUMEN

BACKGROUND: Neuroimmunology research and development has been marked by substantial advances, particularly in the treatment of neuroimmunological diseases, such as multiple sclerosis, myasthenia gravis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody disease. With more than 20 drugs approved for multiple sclerosis alone, treatment has become more personalised. The approval of disease-modifying therapies, particularly those targeting B cells, has highlighted the role of immunotherapeutic interventions in the management of these diseases. Despite these successes, challenges remain, particularly for patients who do not respond to conventional therapies, underscoring the need for innovative approaches. RECENT DEVELOPMENTS: The approval of monoclonal antibodies, such as ocrelizumab and ofatumumab, which target CD20, and inebilizumab, which targets CD19, for the treatment of various neuroimmunological diseases reflects progress in the understanding and management of B-cell activity. However, the limitations of these therapies in halting disease progression or activity in patients with multiple sclerosis or neuromyelitis optica spectrum disorders have prompted the exploration of cell-based therapies, particularly chimeric antigen receptor (CAR) T cells. Initially successful in the treatment of B cell-derived malignancies, CAR T cells offer a novel therapeutic mechanism by directly targeting and eliminating B cells, potentially overcoming the shortcomings of antibody-mediated B cell depletion. WHERE NEXT?: The use of CAR T cells in autoimmune diseases and B cell-driven neuroimmunological diseases shows promise as a targeted and durable option. CAR T cells act autonomously, penetrating deep tissue and effectively depleting B cells, especially in the CNS. Although the therapeutic potential of CAR T cells is substantial, their application faces hurdles such as complex logistics and management of therapy-associated toxic effects. Ongoing and upcoming clinical trials will be crucial in determining the safety, efficacy, and applicability of CAR T cells. As research progresses, CAR T cell therapy has the potential to transform treatment for patients with neuroimmunological diseases. It could offer extended periods of remission and a new standard in the management of autoimmune and neuroimmunological disorders.


Asunto(s)
Linfocitos B , Receptores Quiméricos de Antígenos , Humanos , Linfocitos B/inmunología , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Linfocitos T/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Animales , Enfermedades Autoinmunes del Sistema Nervioso/terapia , Enfermedades Autoinmunes del Sistema Nervioso/inmunología
5.
Nature ; 629(8010): 184-192, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38600378

RESUMEN

Glucocorticoids represent the mainstay of therapy for a broad spectrum of immune-mediated inflammatory diseases. However, the molecular mechanisms underlying their anti-inflammatory mode of action have remained incompletely understood1. Here we show that the anti-inflammatory properties of glucocorticoids involve reprogramming of the mitochondrial metabolism of macrophages, resulting in increased and sustained production of the anti-inflammatory metabolite itaconate and consequent inhibition of the inflammatory response. The glucocorticoid receptor interacts with parts of the pyruvate dehydrogenase complex whereby glucocorticoids provoke an increase in activity and enable an accelerated and paradoxical flux of the tricarboxylic acid (TCA) cycle in otherwise pro-inflammatory macrophages. This glucocorticoid-mediated rewiring of mitochondrial metabolism potentiates TCA-cycle-dependent production of itaconate throughout the inflammatory response, thereby interfering with the production of pro-inflammatory cytokines. By contrast, artificial blocking of the TCA cycle or genetic deficiency in aconitate decarboxylase 1, the rate-limiting enzyme of itaconate synthesis, interferes with the anti-inflammatory effects of glucocorticoids and, accordingly, abrogates their beneficial effects during a diverse range of preclinical models of immune-mediated inflammatory diseases. Our findings provide important insights into the anti-inflammatory properties of glucocorticoids and have substantial implications for the design of new classes of anti-inflammatory drugs.


Asunto(s)
Antiinflamatorios , Glucocorticoides , Inflamación , Macrófagos , Mitocondrias , Succinatos , Animales , Femenino , Humanos , Masculino , Ratones , Antiinflamatorios/farmacología , Carboxiliasas/metabolismo , Carboxiliasas/antagonistas & inhibidores , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Citocinas/inmunología , Citocinas/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Hidroliasas/deficiencia , Hidroliasas/genética , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Complejo Piruvato Deshidrogenasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Succinatos/metabolismo , Activación Enzimática/efectos de los fármacos
6.
Transplant Cell Ther ; 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38460727

RESUMEN

High-dose chemotherapy followed by autologous stem cell transplantation (auto-SCT) is a well-established treatment option for multiple myeloma and malignant lymphoma patients. It is able to induce long-term progression-free survival (PFS) in both patient groups and even provide a cure in patients with aggressive lymphoma. However, relapse is common and has been associated with the pace and quality of immunologic reconstitution after transplantation, as well as with immune cell exhaustion and immunometabolic defects. We aimed to analyze the dynamics of the prototypical exhaustion marker PD-1 on immune cells during reconstitution on high-dose chemotherapy followed by auto-SCT and its impact on PFS. We performed a comprehensive analysis of exhaustion and metabolic markers on immune cells from myeloma and lymphoma patients undergoing auto-SCT using flow cytometry and NanoString technologies. The expression levels of PD-1 were increased during early reconstitution after transplantation on T cells and natural killer (NK) cells, as well as on monocytes. However, while PD-1 expression in NK cells and monocytes normalized over time, PD-1 expression on T cells demonstrated a variable course. Of note, lymphoma patients with continuously increasing PD-1 expression on T cells after auto-SCT had an inferior median PFS of only 146 days, whereas the median PFS was not reached in the lymphoma patients without such a PD-1 expression pattern. T cells from patients with increased PD-1 expression after auto-SCT exhibited an immunometabolic (over)activation and exhausted phenotype compared to T cells from patients with a low PD-1 expression after transplantation, including higher levels of the glycolytic pacemaker enzyme hexokinase 2 and the inhibitory receptor CTLA-4. In addition, proliferating Ki-67+ T cells were more abundant in patients with high PD-1 expression on T cells compared to those with low expression after auto-SCT (11.9% versus 4.2%). PD-1 expression on T cells might serve as an adverse biomarker for lymphoma patients undergoing auto-SCT; however, further validation by larger prospective studies is required.

7.
Cell Commun Signal ; 22(1): 186, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38509561

RESUMEN

BACKGROUND: Calcium (Ca2+) signaling regulates various vital cellular functions, including integrin activation and cell migration. Store-operated calcium entry (SOCE) via calcium release-activated calcium (CRAC) channels represents a major pathway for Ca2+ influx from the extracellular space in multiple cell types. The impact of JAK2-V617F and CALR mutations which are disease initiating in myeloproliferative neoplasms (MPN) on SOCE, calcium flux from the endoplasmic reticulum (ER) to the cytosol, and related key signaling pathways in the presence or absence of erythropoietin (EPO) or thrombopoietin (TPO) is poorly understood. Thus, this study aimed to elucidate the effects of these mutations on the aforementioned calcium dynamics, in cellular models of MPN. METHODS: Intracellular Ca2+ levels were measured over a time frame of 0-1080 s in Fura-2 AM labeled myeloid progenitor 32D cells expressing various mutations (JAK2-WT/EpoR, JAK2-V617F/EpoR; CALR-WT/MPL, CALR-ins5/MPL, and del52/MPL). Basal Ca2+ concentrations were assessed from 0-108 s. Subsequently, cells were stimulated with EPO/TPO in Ca2+-free Ringer solution, measuring Ca2+ levels from 109-594 s (store depletion). Then, 2 mM of Ca2+ buffer resembling physiological concentrations was added to induce SOCE, and Ca2+ levels were measured from 595-1080 s. Fura-2 AM emission ratios (F340/380) were used to quantify the integrated Ca2+ signal. Statistical significance was assessed by unpaired Student's t-test or Mann-Whitney-U-test, one-way or two-way ANOVA followed by Tukey's multiple comparison test. RESULTS: Following EPO stimulation, the area under the curve (AUC) representing SOCE significantly increased in 32D-JAK2-V617F cells compared to JAK2-WT cells. In TPO-stimulated CALR cells, we observed elevated Ca2+ levels during store depletion and SOCE in CALR-WT cells compared to CALR-ins5 and del52 cells. Notably, upon stimulation, key components of the Ca2+ signaling pathways, including PLCγ-1 and IP3R, were differentially affected in these cell lines. Hyper-activated PLCγ-1 and IP3R were observed in JAK2-V617F but not in CALR mutated cells. Inhibition of calcium regulatory mechanisms suppressed cellular growth and induced apoptosis in JAK2-V617F cells. CONCLUSIONS: This report highlights the impact of JAK2 and CALR mutations on Ca2+ flux (store depletion and SOCE) in response to stimulation with EPO and TPO. The study shows that the JAK2-V617F mutation strongly alters the regulatory mechanism of EpoR/JAK2-dependent intracellular calcium balance, affecting baseline calcium levels, EPO-induced calcium entry, and PLCγ-1 signaling pathways. Our results reveal an important role of calcium flux in the homeostasis of JAK2-V617F positive cells.


Asunto(s)
Calcio , Trastornos Mieloproliferativos , Humanos , Fura-2 , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Transducción de Señal , Mutación , Receptores de Eritropoyetina/genética , Janus Quinasa 2/genética
8.
Hemasphere ; 8(2): e48, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38435424

RESUMEN

CD19-directed immunotherapy has become a cornerstone in the therapy of B-cell precursor acute lymphoblastic leukemia (BCP-ALL). CD19-directed cellular and antibody-based therapeutics have entered therapy of primary and relapsed disease and contributed to improved outcomes in relapsed disease and lower therapy toxicity. However, efficacy remains limited in many cases due to a lack of therapy response, short remission phases, or antigen escape. Here, BCP-ALL cell lines, patient-derived xenograft (PDX) samples, human macrophages, and an in vivo transplantation model in NOD.Cg-PrkdcscidIl2rgtm1Wjl/SzJ (NSG) mice were used to examine the therapeutic potency of a CD19 antibody Fc-engineered for improved effector cell recruitment (CD19-DE) and antibody-dependent cellular phagocytosis (ADCP), in combination with a novel modified CD47 antibody (Hu5F9-IgG2σ). For the in vivo model, only samples refractory to CD19-DE monotherapy were chosen. Hu5F9-IgG2σ enhanced ADCP by CD19-DE in various BCP-ALL cell line models with varying CD19 surface expression and cytogenetic backgrounds, two of which contained the KMT2A-AFF1 fusion. Also, the antibody combination was efficient in inducing ADCP by human macrophages in pediatric PDX samples with and adult samples with and without KMT2A-rearrangement in vitro. In a randomized phase 2-like PDX trial using seven KMT2A-rearranged BCP-ALL samples in NSG mice, the CD19/CD47 antibody combination proved highly efficient. Our findings support that the efficacy of Fc-engineered CD19 antibodies may be substantially enhanced by a combination with CD47 blockade. This suggests that the combination may be a promising therapy option for BCP-ALL, especially in relapsed patients and/or patients refractory to CD19-directed therapy.

9.
Leuk Lymphoma ; : 1-8, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38384127

RESUMEN

Studies regarding the influence of body composition parameters as predictors on overall survival (OS) in patients with multiple myeloma (MM) are scarce. OS and progression-free survival (PFS) were retrospectively assessed in 129 patients with MM undergoing autologous stem cell transplantation (ASCT) after a follow-up of 2 years. A computed tomography (CT) based semi-automated assessment of body composition was performed. No statistically significant differences were noted in 2-year OS, PFS, or post-transplant adverse events in the body composition groups of subcutaneous adipose tissue (SAT) (low vs. high-SAT), visceral adipose tissue (VAT) (low vs. high-VAT), visceral-to-subcutaneous fat ratio (VSR) (low vs. high VSR), and sarcopenia in terms of skeletal muscle index (SMI) (non-sarcopenic vs. sarcopenic). In conclusion, adipose and muscle tissue do not limit OS or affect the PFS in patients with MM undergoing ASCT.

10.
N Engl J Med ; 390(8): 687-700, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38381673

RESUMEN

BACKGROUND: Treatment for autoimmune diseases such as systemic lupus erythematosus (SLE), idiopathic inflammatory myositis, and systemic sclerosis often involves long-term immune suppression. Resetting aberrant autoimmunity in these diseases through deep depletion of B cells is a potential strategy for achieving sustained drug-free remission. METHODS: We evaluated 15 patients with severe SLE (8 patients), idiopathic inflammatory myositis (3 patients), or systemic sclerosis (4 patients) who received a single infusion of CD19 chimeric antigen receptor (CAR) T cells after preconditioning with fludarabine and cyclophosphamide. Efficacy up to 2 years after CAR T-cell infusion was assessed by means of Definition of Remission in SLE (DORIS) remission criteria, American College of Rheumatology-European League against Rheumatism (ACR-EULAR) major clinical response, and the score on the European Scleroderma Trials and Research Group (EUSTAR) activity index (with higher scores indicating greater disease activity), among others. Safety variables, including cytokine release syndrome and infections, were recorded. RESULTS: The median follow-up was 15 months (range, 4 to 29). The mean (±SD) duration of B-cell aplasia was 112±47 days. All the patients with SLE had DORIS remission, all the patients with idiopathic inflammatory myositis had an ACR-EULAR major clinical response, and all the patients with systemic sclerosis had a decrease in the score on the EUSTAR activity index. Immunosuppressive therapy was completely stopped in all the patients. Grade 1 cytokine release syndrome occurred in 10 patients. One patient each had grade 2 cytokine release syndrome, grade 1 immune effector cell-associated neurotoxicity syndrome, and pneumonia that resulted in hospitalization. CONCLUSIONS: In this case series, CD19 CAR T-cell transfer appeared to be feasible, safe, and efficacious in three different autoimmune diseases, providing rationale for further controlled clinical trials. (Funded by Deutsche Forschungsgemeinschaft and others.).


Asunto(s)
Antígenos CD19 , Inmunoterapia Adoptiva , Lupus Eritematoso Sistémico , Agonistas Mieloablativos , Miositis , Esclerodermia Sistémica , Humanos , Antígenos CD19/administración & dosificación , Síndrome de Liberación de Citoquinas/etiología , Estudios de Seguimiento , Lupus Eritematoso Sistémico/terapia , Miositis/terapia , Esclerodermia Sistémica/terapia , Agonistas Mieloablativos/administración & dosificación , Ciclofosfamida/administración & dosificación , Infecciones/etiología , Resultado del Tratamiento
11.
Eur J Haematol ; 112(4): 641-649, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38164819

RESUMEN

OBJECTIVES: Treatment intensification (including consolidative high-dose chemotherapy with autologous stem cell transplantation [HDT-ASCT]) significantly improved outcome in primary central nervous system lymphoma (PCNSL) patients. METHODS: We conducted a multicenter, retrospective analysis of newly diagnosed PCNSL patients, treated with intensified treatment regimens. The following scores were evaluated in terms of overall survival (OS) and progression-free survival (PFS): Memorial Sloan-Kettering Cancer Center (MSKCC), International Extranodal Lymphoma Study Group (IELSG), and three-factor (3F) prognostic score. Further, all scores were comparatively investigated for model quality and concordance. RESULTS: Altogether, 174 PCNSL patients were included. One hundred and five patients (60.3%) underwent HDT-ASCT. Two-year OS and 2-year PFS for the entire population were 73.3% and 48.5%, respectively. The MSKCC (p = .003) and 3F score (p < .001), but not the IELSG score (p = .06), had the discriminatory power to identify different risk groups for OS. In regard to concordance, the 3F score (C-index [0.71]) outperformed both the MSKCC (C-index [0.64]) and IELSG (C-index [0.53]) score. Moreover, the superiority of the 3F score was shown for PFS, successfully stratifying patients in three risk groups, which also resulted in the highest C-index (0.66). CONCLUSION: The comparative analysis of established PCNSL risk scores affirm the clinical utility of the 3F score stratifying the widest prognostic spectrum among PCNSL patients treated with intensified treatment approaches.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Trasplante de Células Madre Hematopoyéticas , Linfoma , Humanos , Trasplante de Células Madre Hematopoyéticas/métodos , Pronóstico , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Estudios Retrospectivos , Trasplante Autólogo , Linfoma/terapia , Linfoma/tratamiento farmacológico
12.
Eur Radiol ; 34(2): 790-796, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37178198

RESUMEN

OBJECTIVE: Body composition assessment derived from cross-sectional imaging has shown promising results as a prognostic biomarker in several tumor entities. Our aim was to analyze the role of low skeletal muscle mass (LSMM) and fat areas for prognosis of dose-limiting toxicity (DLT) and treatment response in patients with primary central nervous system lymphoma (PCNSL). METHODS: Overall, 61 patients (29 female patients, 47.5%) with a mean age of 63.8 ± 12.2 years, range 23-81 years, were identified in the data base between 2012 and 2020 with sufficient clinical and imaging data. Body composition assessment, comprising LSMM and visceral and subcutaneous fat areas, was performed on one axial slice on L3-height derived from staging computed tomography (CT) images. DLT was assessed during chemotherapy in clinical routine. Objective response rate (ORR) was measured on following magnetic resonance images of the head accordingly to the Cheson criteria. RESULTS: Twenty-eight patients had DLT (45.9%). Regression analysis revealed that LSMM was associated with objective response, OR = 5.19 (95% CI 1.35-19.94, p = 0.02) (univariable regression), and OR = 4.23 (95% CI 1.03- 17.38, p = 0.046) (multivariable regression). None of the body composition parameters could predict DLT. Patients with normal visceral to subcutaneous ratio (VSR) could be treated with more chemotherapy cycles compared to patients with high VSR (mean, 4.25 vs 2.94, p = 0.03). Patients with ORR had higher muscle density values compared to patients with stable and/or progressive disease (34.46 ± vs 28.18 ± HU, p = 0.02). CONCLUSIONS: LSMM is strongly associated with objective response in patients with PCNSL. Body composition parameters cannot predict DLT. CLINICAL RELEVANCE STATEMENT: Low skeletal muscle mass on computed tomography (CT) is an independent prognostic factor of poor treatment response in central nervous system lymphoma. Analysis of the skeletal musculature on staging CT should be implemented into the clinical routine in this tumor entity. KEY POINTS: • Low skeletal muscle mass is strongly associated with the objective response rate. • No body composition parameters could predict dose-limiting toxicity.


Asunto(s)
Linfoma , Neoplasias , Sarcopenia , Humanos , Femenino , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años , Sarcopenia/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Pronóstico , Composición Corporal , Tomografía Computarizada por Rayos X , Neoplasias/patología , Sistema Nervioso Central/patología , Linfoma/diagnóstico por imagen , Linfoma/tratamiento farmacológico , Estudios Retrospectivos
13.
BMC Cancer ; 23(1): 1153, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012567

RESUMEN

Chronic myeloid leukemia (CML) is effectively treated with tyrosine kinase inhibitors (TKIs), targeting the BCR::ABL1 oncoprotein. Still, resistance to therapy, relapse after treatment discontinuation, and side effects remain significant issues of long-term TKI treatment. Preliminary studies have shown that targeting oxidative phosphorylation (oxPhos) and the unfolded protein response (UPR) are promising therapeutic approaches to complement CML treatment. Here, we tested the efficacy of different TKIs, combined with the ATP synthase inhibitor oligomycin and the ER stress inducer thapsigargin in the CML cell lines K562, BV173, and KU812 and found a significant increase in cell death. Both, oligomycin and thapsigargin, triggered the upregulation of the UPR proteins ATF4 and CHOP, which was inhibited by imatinib. We observed comparable effects on cell death when combining TKIs with the ATP synthase inhibitor 8-chloroadenosine (8-Cl-Ado) as a potentially clinically applicable therapeutic agent. Stress-related apoptosis was triggered via a caspase cascade including the cleavage of caspase 3 and the inactivation of poly ADP ribose polymerase 1 (PARP1). The inhibition of PARP by olaparib also increased CML death in combination with TKIs. Our findings suggest a rationale for combining TKIs with 8-Cl-Ado or olaparib for future clinical studies in CML.


Asunto(s)
Leucemia Mielógena Crónica BCR-ABL Positiva , Humanos , Proteínas de Fusión bcr-abl , Fosforilación Oxidativa , Tapsigargina/farmacología , Tapsigargina/uso terapéutico , Resistencia a Antineoplásicos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Inhibidores Enzimáticos/farmacología , Leucemia Mielógena Crónica BCR-ABL Positiva/tratamiento farmacológico , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Oligomicinas/farmacología , Adenosina Trifosfato/metabolismo , Apoptosis
14.
RMD Open ; 9(4)2023 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-37996128

RESUMEN

Autoimmune disorders occur when immune cells go wrong and attack the body's own tissues. Currently, autoimmune disorders are largely treated by broad immunosuppressive agents and blocking antibodies, which can manage the diseases but often are not curative. Thus, there is an urgent need for advanced therapies for patients suffering from severe and refractory autoimmune diseases, and researchers have considered cell therapy as potentially curative approach for several decades. In the wake of its success in cancer therapy, adoptive transfer of engineered T cells modified with chimeric antigen receptors (CAR) for target recognition could now become a therapeutic option for some autoimmune diseases. Here, we review the ongoing developments with CAR T cells in the field of autoimmune disorders. We will cover first clinical results of applying anti-CD19 and anti-B cell maturation antigen CAR T cells for B cell elimination in systemic lupus erythematosus, refractory antisynthetase syndrome and myasthenia gravis, respectively. Furthermore, in preclinical models, researchers have also developed chimeric autoantibody receptor T cells that can eliminate individual B cell clones producing specific autoantibodies, and regulatory CAR T cells that do not eliminate autoreactive immune cells but dampen their wrong activation. Finally, we will address safety and manufacturing aspects for CAR T cells and discuss mRNA technologies and automation concepts for ensuring the future availability of safe and efficient CAR T cell products.


Asunto(s)
Enfermedades Autoinmunes , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Linfocitos T , Receptores Quiméricos de Antígenos/genética , Enfermedades Autoinmunes/terapia , Enfermedades Autoinmunes/etiología
16.
Lancet ; 402(10416): 2034-2044, 2023 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-37748491

RESUMEN

Despite the tremendous progress in the clinical management of autoimmune diseases, many patients do not respond to the currently used treatments. Autoreactive B cells play a key role in the pathogenesis of autoimmune diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and multiple sclerosis. B-cell-depleting monoclonal antibodies, such as rituximab, have poor therapeutic efficacy in autoimmune diseases, mainly due to the persistence of autoreactive B cells in lymphatic organs and inflamed tissues. The adoptive transfer of T cells engineered to target tumour cells via chimeric antigen receptors (CARs) has emerged as an effective treatment modality in B-cell malignancies. In the last 2 years treatment with autologous CAR T cells directed against the CD19 antigen has been introduced in therapy of autoimmune disease. CD19 CAR T cells induced a rapid and sustained depletion of circulating B cells, as well as in a complete clinical and serological remission of refractory systemic lupus erythematosus and dermatomyositis. In this paper, we discuss the evolving strategies for targeting autoreactive B cells via CAR T cells, which might be used for targeted therapy in autoimmune diseases.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Enfermedades Autoinmunes/terapia , Linfocitos T , Lupus Eritematoso Sistémico/tratamiento farmacológico , Rituximab/uso terapéutico , Receptores Quiméricos de Antígenos/uso terapéutico , Antígenos CD19 , Receptores de Antígenos de Linfocitos T
18.
Transplant Cell Ther ; 29(12): 750-756, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37709204

RESUMEN

The outcome of patients with large B cell lymphoma (LBCL) who relapse or progress after CD19-directed chimeric antigen receptor T cell therapy (CAR-T) administered as salvage therapy beyond the second treatment line is poor. However, a minority of patients become long-term survivors despite CAR-T failure. The German Lymphoma Alliance (GLA) has proposed a hierarchical management algorithm for CAR-T failure in LBCL, aimed at allogeneic hematopoietic cell transplantation (alloHCT) as definite therapy in eligible patients. The purpose of this study was to investigate characteristics, relapse patterns, and management strategies in long-term survivors after CAR-T failure, with a particular focus on the feasibility and outcome of alloHCT. This was a retrospective analysis of all evaluable patients with a relapse/progression event (REL) observed in a previously reported GLA sample between November 2018 and May 2021. REL occurred in 214 of 356 patients (60%) who underwent CAR-T for LBCL in the previous GLA study. An evaluable dataset was available for 143 of these 214 patients (67%). Twenty-six of 143 patients (18%) survived 12 months or longer from REL, 109 (76%) died within the first year after REL, and 8 (6%) were alive but had not reached the 12-month landmark. Long-term survivors had more favorable pre-CAR-T features, had a longer interval between CAR-T and REL, and had more often received a tumor biopsy after CAR-T failure, whereas the choice of the first salvage regimen had no impact. AlloHCT was feasible in 40 of 53 patients (75%) intended and resulted in a 12-month post-transplantation overall survival of 36% in those patients who underwent transplantation with sensitive or untreated REL. AlloHCT after CAR-T failure in LBCL is feasible and may be an important contributor to long-term survival, although selection bias must be taken into account. Thus, alloHCT should be considered as a reasonable treatment option for eligible patients in this setting. However, because the overall outlook after CAR-T failure remains poor, novel effective therapeutic approaches are needed, either to allow long-term disease control per se or to improve the preconditions for successful alloHCT.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Linfoma de Células B Grandes Difuso , Receptores Quiméricos de Antígenos , Humanos , Estudios Retrospectivos , Recurrencia Local de Neoplasia/etiología , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Trasplante de Células Madre Hematopoyéticas/métodos , Linfoma de Células B Grandes Difuso/terapia , Sistema de Registros , Recurrencia , Sobrevivientes
20.
Front Oncol ; 13: 1188478, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37546419

RESUMEN

Background and aim: High-grade B cell lymphomas with concomitant MYC and BCL2 and/or BCL6 rearrangements (HGBCL-DH/TH) have a poor prognosis when treated with the standard R-CHOP-like chemoimmunotherapy protocol. Whether this can be improved using intensified regimens is still under debate. However, due to the rarity of HGBCL-DH/TH there are no prospective, randomized controlled trials (RCT) available. Thus, with this systematic review and meta-analysis we attempted to compare survival in HGBCL-DH/TH patients receiving intensified vs. R-CHOP(-like) regimens. Methods: The PubMed and Web of Science databases were searched for original studies reporting on first-line treatment in HGBCL-DH/TH patients from 08/2014 until 04/2022. Studies with only localized stage disease, ≤10 patients, single-arm, non-full peer-reviewed publications, and preclinical studies were excluded. The quality of literature and the risk of bias was assessed using the Methodological Index for Non-Randomized Studies (MINORS) and National Heart, Lung, and Blood Institute (NHLBI) Quality Assessment Tool for Observational Cohort and Cross-Sectional Studies. Random-effect models were used to compare R-CHOP-(like) and intensified regimens regarding 2-year overall survival (2y-OS) and 2-year progression-free survival (2y-PFS). Results: Altogether, 11 retrospective studies, but no RCT, with 891 patients were included. Only four studies were of good quality based on aforementioned criteria. Intensified treatment could improve 2y-OS (hazard ratio [HR]=0.78 [95% confidence interval [CI] 0.63-0.96]; p=0.02) as well as 2y-PFS (HR=0.66 [95% CI 0.44-0.99]; p=0.045). Conclusions: This meta-analysis indicates that intensified regimens could possibly improve 2y-OS and 2y-PFS in HGBCL-DH/TH patients. However, the significance of these results is mainly limited by data quality, data robustness, and its retrospective nature. There is still a need for innovative controlled clinical trials in this difficult to treat patient population. Systematic review registration: https://www.crd.york.ac.uk/prospero, identifier CRD42022313234.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...