Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Ophthalmology ; 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38490274

RESUMEN

PURPOSE: To examine the association between glucagon-like peptide-1 receptor agonist (GLP-1RA) use and the development of glaucoma in individuals with type 2 diabetes. DESIGN: Nationwide, nested case-control study. PARTICIPANTS: From a nationwide cohort of 264 708 individuals, we identified 1737 incident glaucoma cases and matched them to 8685 glaucoma-free controls, all aged more than 21 years and treated with metformin and a second-line antihyperglycemic drug formulation, with no history of glaucoma, eye trauma, or eye surgery. METHODS: Cases were incidence-density-matched to 5 controls by birth year, sex, and date of second-line treatment initiation. MAIN OUTCOME MEASURES: Conditional logistic regression was used to calculate adjusted hazard ratios (HRs) with 95% confidence intervals (CIs) for glaucoma, defined by first-time diagnosis, first-time use of glaucoma-specific medication, or first-time glaucoma-specific surgical intervention. RESULTS: Compared with the reference group, who received treatments other than GLP-1RA, individuals who were exposed to GLP-1RA treatment exhibited a lower risk of incident glaucoma (HR, 0.81; CI, 0.70-0.94; P = 0.006). Prolonged treatment extending beyond 3 years lowered the risk even further (HR, 0.71; CI, 0.55-0.91; P = 0.007). Treatment with GLP-1RA for 0 to 1 year (HR, 0.89; CI, 0.70-1.14; P = 0.35) and 1 to 3 years (HR, 0.85; CI, 0.67-1.06; P = 0.15) was not significant. CONCLUSIONS: Exposure to GLP-1RA was associated with a lower risk of developing glaucoma compared with receiving other second-line antihyperglycemic medication. FINANCIAL DISCLOSURE(S): Proprietary or commercial disclosure may be found after the references.

2.
Front Neurol ; 12: 624983, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33796062

RESUMEN

Glaucoma is the second leading cause of blindness worldwide, affecting ~80 million people by 2020 (1, 2). The condition is characterized by a progressive loss of retinal ganglion cells (RGCs) and their axons accompanied by visual field loss. The underlying pathophysiology of glaucoma remains elusive. Glaucoma is recognized as a multifactorial disease, and lowering intraocular pressure (IOP) is the only treatment that has been shown to slow the progression of the condition. However, a significant number of glaucoma patients continue to go blind despite intraocular pressure-lowering treatment (2). Thus, the need for alternative treatment strategies is indisputable. Accumulating evidence suggests that glial cells play a significant role in supporting RGC function and that glial dysfunction may contribute to optic nerve disease. Here, we review recent advances in understanding the role of glial cells in the pathophysiology of glaucoma. A particular focus is on the dynamic and essential interactions between glial cells and RGCs and potential therapeutic approaches to glaucoma by targeting glial cells.

3.
J Clin Med ; 9(9)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942740

RESUMEN

The main risk factor for primary open-angle glaucoma (POAG) is increased intraocular pressure (IOP). It is of interest that about half of the patients have an IOP within the normal range (normal-tension glaucoma, NTG). Additionally, there is a group of patients with a high IOP but no glaucomatous neurodegeneration (ocular hypertension, OHT). Therefore, risk factors other than IOP are involved in the pathogenesis of glaucoma. Since the retina has a very high oxygen-demand, decreased autoregulation and a fluctuating oxygen supply to the retina have been linked to glaucomatous neurodegeneration. To assess the significance of these mechanisms, we have utilized a human experimental model, in which we stress participants with a fluctuating oxygen supply. Levels of oxidative stress molecules, antioxidants, and lipid mediators were measured in the plasma. Patients with NTG, OHT, and control subjects were found to have similar levels of oxidative stress markers. In contrast, patients with OHT had a higher level of total antioxidant capacity (TAC) and pro-homeostatic lipid mediators. Thus, we suggest that OHT patients manage fluctuating oxygen levels more efficiently and, thus, are less susceptible to glaucomatous neurodegenerations, due to enhanced systemic antioxidant protection.

4.
J Glaucoma ; 28(4): 325-333, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30585937

RESUMEN

Glaucoma is the leading cause of irreversible blindness worldwide. Although no definitive cure exists, lowering of the intraocular pressure decreases the rate of progression in the majority of patients with glaucoma. Antiglaucomatous treatment modalities consist predominantly of chronic use of eye drops. It has become increasingly evident that long-term exposure to eye drops has a significant impact on the ocular surface, and thereby on patient compliance and quality of life. Maintenance of the ocular surface is highly dependent on a stable tear film. Conjunctival goblet cells (GCs) of the ocular surface play an important role in providing the innermost mucin layer of the tear film and are essential for maintaining the ocular surface homeostasis. Recent studies have reported severe side effects of antiglaucomatous drops on GCs. In particular, a preservative containing antiglaucomatous drops have been shown to affect the viability and functions of the GCs. Furthermore, GC density has been suggested as a potential predictor of surgical outcome after filtration surgery. The present review provides an overview of the current literature on the impact of antiglaucomatous eye drops on GCs as well as the impact on the ocular surface. Moreover, the existing evidence of a possible association between GC density and glaucoma filtration surgery outcome is summarized. We conclude that prostaglandin analogs spare the conjunctival GCs more compared with other antiglaucomatous drops and that GCs may be a good predictor of surgical outcome after filtration surgery. Overall, given the multiple functions of GCs in the ocular surface homeostasis, dedicated strategies should be adopted to preserve this cell population during the course of glaucoma.


Asunto(s)
Antihipertensivos/uso terapéutico , Conjuntiva/efectos de los fármacos , Glaucoma/tratamiento farmacológico , Células Caliciformes/efectos de los fármacos , Conservadores Farmacéuticos/uso terapéutico , Administración Oftálmica , Conjuntiva/patología , Síndromes de Ojo Seco/fisiopatología , Células Caliciformes/patología , Humanos , Presión Intraocular/efectos de los fármacos , Soluciones Oftálmicas/uso terapéutico , Calidad de Vida , Lágrimas/fisiología , Tonometría Ocular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...