Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Invest Ophthalmol Vis Sci ; 65(6): 6, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38833259

RESUMEN

Purpose: To develop Choroidalyzer, an open-source, end-to-end pipeline for segmenting the choroid region, vessels, and fovea, and deriving choroidal thickness, area, and vascular index. Methods: We used 5600 OCT B-scans (233 subjects, six systemic disease cohorts, three device types, two manufacturers). To generate region and vessel ground-truths, we used state-of-the-art automatic methods following manual correction of inaccurate segmentations, with foveal positions manually annotated. We trained a U-Net deep learning model to detect the region, vessels, and fovea to calculate choroid thickness, area, and vascular index in a fovea-centered region of interest. We analyzed segmentation agreement (AUC, Dice) and choroid metrics agreement (Pearson, Spearman, mean absolute error [MAE]) in internal and external test sets. We compared Choroidalyzer to two manual graders on a small subset of external test images and examined cases of high error. Results: Choroidalyzer took 0.299 seconds per image on a standard laptop and achieved excellent region (Dice: internal 0.9789, external 0.9749), very good vessel segmentation performance (Dice: internal 0.8817, external 0.8703), and excellent fovea location prediction (MAE: internal 3.9 pixels, external 3.4 pixels). For thickness, area, and vascular index, Pearson correlations were 0.9754, 0.9815, and 0.8285 (internal)/0.9831, 0.9779, 0.7948 (external), respectively (all P < 0.0001). Choroidalyzer's agreement with graders was comparable to the intergrader agreement across all metrics. Conclusions: Choroidalyzer is an open-source, end-to-end pipeline that accurately segments the choroid and reliably extracts thickness, area, and vascular index. Especially choroidal vessel segmentation is a difficult and subjective task, and fully automatic methods like Choroidalyzer could provide objectivity and standardization.


Asunto(s)
Coroides , Tomografía de Coherencia Óptica , Humanos , Coroides/irrigación sanguínea , Coroides/diagnóstico por imagen , Tomografía de Coherencia Óptica/métodos , Masculino , Femenino , Persona de Mediana Edad , Anciano , Aprendizaje Profundo , Vasos Retinianos/diagnóstico por imagen , Fóvea Central/diagnóstico por imagen , Fóvea Central/irrigación sanguínea , Adulto , Reproducibilidad de los Resultados
2.
Invest Ophthalmol Vis Sci ; 65(6): 10, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38842831

RESUMEN

Purpose: To investigate whether fractal dimension (FD)-based oculomics could be used for individual risk prediction by evaluating repeatability and robustness. Methods: We used two datasets: "Caledonia," healthy adults imaged multiple times in quick succession for research (26 subjects, 39 eyes, 377 color fundus images), and GRAPE, glaucoma patients with baseline and follow-up visits (106 subjects, 196 eyes, 392 images). Mean follow-up time was 18.3 months in GRAPE; thus it provides a pessimistic lower bound because vasculature could change. FD was computed with DART and AutoMorph. Image quality was assessed with QuickQual, but no images were initially excluded. Pearson, Spearman, and intraclass correlation (ICC) were used for population-level repeatability. For individual-level repeatability, we introduce measurement noise parameter λ, which is within-eye standard deviation (SD) of FD measurements in units of between-eyes SD. Results: In Caledonia, ICC was 0.8153 for DART and 0.5779 for AutoMorph, Pearson/Spearman correlation (first and last image) 0.7857/0.7824 for DART, and 0.3933/0.6253 for AutoMorph. In GRAPE, Pearson/Spearman correlation (first and next visit) was 0.7479/0.7474 for DART, and 0.7109/0.7208 for AutoMorph (all P < 0.0001). Median λ in Caledonia without exclusions was 3.55% for DART and 12.65% for AutoMorph and improved to up to 1.67% and 6.64% with quality-based exclusions, respectively. Quality exclusions primarily mitigated large outliers. Worst quality in an eye correlated strongly with λ (Pearson 0.5350-0.7550, depending on dataset and method, all P < 0.0001). Conclusions: Repeatability was sufficient for individual-level predictions in heterogeneous populations. DART performed better on all metrics and might be able to detect small, longitudinal changes, highlighting the potential of robust methods.


Asunto(s)
Fractales , Humanos , Femenino , Reproducibilidad de los Resultados , Masculino , Persona de Mediana Edad , Adulto , Medición de Riesgo/métodos , Anciano , Glaucoma/diagnóstico , Glaucoma/fisiopatología , Estudios de Seguimiento , Retina/diagnóstico por imagen , Vasos Retinianos/diagnóstico por imagen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA