Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Rep ; 43(5): 114158, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38722742

RESUMEN

Throughout the brain, astrocytes form networks mediated by gap junction channels that promote the activity of neuronal ensembles. Although their inputs on neuronal information processing are well established, how molecular gap junction channels shape neuronal network patterns remains unclear. Here, using astroglial connexin-deficient mice, in which astrocytes are disconnected and neuronal bursting patterns are abnormal, we show that astrocyte networks strengthen bursting activity via dynamic regulation of extracellular potassium levels, independently of glutamate homeostasis or metabolic support. Using a facilitation-depression model, we identify neuronal afterhyperpolarization as the key parameter underlying bursting pattern regulation by extracellular potassium in mice with disconnected astrocytes. We confirm this prediction experimentally and reveal that astroglial network control of extracellular potassium sustains neuronal afterhyperpolarization via KCNQ voltage-gated K+ channels. Altogether, these data delineate how astroglial gap junctions mechanistically strengthen neuronal population bursts and point to approaches for controlling aberrant activity in neurological diseases.


Asunto(s)
Astrocitos , Uniones Comunicantes , Hipocampo , Canales de Potasio KCNQ , Potasio , Animales , Uniones Comunicantes/metabolismo , Astrocitos/metabolismo , Hipocampo/metabolismo , Ratones , Canales de Potasio KCNQ/metabolismo , Canales de Potasio KCNQ/genética , Potasio/metabolismo , Neuronas/metabolismo , Potenciales de Acción/fisiología , Red Nerviosa/metabolismo , Conexinas/metabolismo , Conexinas/genética , Ratones Endogámicos C57BL , Ratones Noqueados
3.
Cell Rep ; 42(5): 112456, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37126448

RESUMEN

The regulation of translation in astrocytes, the main glial cells in the brain, remains poorly characterized. We developed a high-throughput proteomics screen for polysome-associated proteins in astrocytes and focused on ribosomal protein receptor of activated protein C kinase 1 (RACK1), a critical factor in translational regulation. In astrocyte somata and perisynaptic astrocytic processes (PAPs), RACK1 preferentially binds to a number of mRNAs, including Kcnj10, encoding the inward-rectifying potassium (K+) channel Kir4.1. By developing an astrocyte-specific, conditional RACK1 knockout mouse model, we show that RACK1 represses production of Kir4.1 in hippocampal astrocytes and PAPs. Upregulation of Kir4.1 in the absence of RACK1 increases astrocytic Kir4.1-mediated K+ currents and volume. It also modifies neuronal activity attenuating burst frequency and duration. Reporter-based assays reveal that RACK1 controls Kcnj10 translation through the transcript's 5' untranslated region. Hence, translational regulation by RACK1 in astrocytes represses Kir4.1 expression and influences neuronal activity.


Asunto(s)
Astrocitos , Neuroglía , Animales , Ratones , Astrocitos/metabolismo , Ratones Noqueados , Neuroglía/metabolismo , Neuronas , Receptores de Cinasa C Activada/metabolismo , Ribosomas
4.
PLoS Biol ; 21(4): e3002075, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37040348

RESUMEN

Astrocytes crucially contribute to synaptic physiology and information processing. One of their key characteristics is to express high levels of connexins (Cxs), the gap junction-forming protein. Among them, Cx30 displays specific properties since it is postnatally expressed and dynamically upregulated by neuronal activity and modulates cognitive processes by shaping synaptic and network activities, as recently shown in knockout mice. However, it remains unknown whether local and selective upregulation of Cx30 in postnatal astrocytes within a physiological range modulates neuronal activities in the hippocampus. We here show in mice that, whereas Cx30 upregulation increases the connectivity of astroglial networks, it decreases spontaneous and evoked synaptic transmission. This effect results from a reduced neuronal excitability and translates into an alteration in the induction of synaptic plasticity and an in vivo impairment in learning processes. Altogether, these results suggest that astroglial networks have a physiologically optimized size to appropriately regulate neuronal functions.


Asunto(s)
Astrocitos , Conexina 43 , Ratones , Animales , Conexina 30/metabolismo , Astrocitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Regulación hacia Arriba , Conexinas/genética , Conexinas/metabolismo , Ratones Noqueados , Hipocampo/metabolismo
5.
PLoS Biol ; 20(12): e3001891, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36477165

RESUMEN

Astroglial release of molecules is thought to actively modulate neuronal activity, but the nature, release pathway, and cellular targets of these neuroactive molecules are still unclear. Pannexin 1, expressed by neurons and astrocytes, form nonselective large pore channels that mediate extracellular exchange of molecules. The functional relevance of these channels has been mostly studied in brain tissues, without considering their specific role in different cell types, or in neurons. Thus, our knowledge of astroglial pannexin 1 regulation and its control of neuronal activity remains very limited, largely due to the lack of tools targeting these channels in a cell-specific way. We here show that astroglial pannexin 1 expression in mice is developmentally regulated and that its activation is activity-dependent. Using astrocyte-specific molecular tools, we found that astroglial-specific pannexin 1 channel activation, in contrast to pannexin 1 activation in all cell types, selectively and negatively regulates hippocampal networks, with their disruption inducing a drastic switch from bursts to paroxysmal activity. This decrease in neuronal excitability occurs via an unconventional astroglial mechanism whereby pannexin 1 channel activity drives purinergic signaling-mediated regulation of hyperpolarisation-activated cyclic nucleotide (HCN)-gated channels. Our findings suggest that astroglial pannexin 1 channel activation serves as a negative feedback mechanism crucial for the inhibition of hippocampal neuronal networks.


Asunto(s)
Astrocitos , Conexinas , Modelos Animales de Enfermedad , Animales , Ratones , Conexinas/metabolismo , Astrocitos/metabolismo
6.
Nat Commun ; 13(1): 753, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136061

RESUMEN

Presynaptic glutamate replenishment is fundamental to brain function. In high activity regimes, such as epileptic episodes, this process is thought to rely on the glutamate-glutamine cycle between neurons and astrocytes. However the presence of an astroglial glutamine supply, as well as its functional relevance in vivo in the healthy brain remain controversial, partly due to a lack of tools that can directly examine glutamine transfer. Here, we generated a fluorescent probe that tracks glutamine in live cells, which provides direct visual evidence of an activity-dependent glutamine supply from astroglial networks to presynaptic structures under physiological conditions. This mobilization is mediated by connexin43, an astroglial protein with both gap-junction and hemichannel functions, and is essential for synaptic transmission and object recognition memory. Our findings uncover an indispensable recruitment of astroglial glutamine in physiological synaptic activity and memory via an unconventional pathway, thus providing an astrocyte basis for cognitive processes.


Asunto(s)
Astrocitos/metabolismo , Glutamina/metabolismo , Hipocampo/fisiología , Reconocimiento en Psicología , Transmisión Sináptica , Animales , Cognición , Colorantes Fluorescentes/química , Ácido Glutámico/química , Ácido Glutámico/metabolismo , Glutamina/química , Hipocampo/citología , Microscopía Intravital , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Sondas Moleculares , Neuronas/metabolismo , Rodaminas/química , Técnicas Estereotáxicas
7.
Science ; 373(6550): 77-81, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-34210880

RESUMEN

Brain postnatal development is characterized by critical periods of experience-dependent remodeling of neuronal circuits. Failure to end these periods results in neurodevelopmental disorders. The cellular processes defining critical-period timing remain unclear. Here, we show that in the mouse visual cortex, astrocytes control critical-period closure. We uncover the underlying pathway, which involves astrocytic regulation of the extracellular matrix, allowing interneuron maturation. Unconventional astrocyte connexin signaling hinders expression of extracellular matrix-degrading enzyme matrix metalloproteinase 9 (MMP9) through RhoA-guanosine triphosphatase activation. Thus, astrocytes not only influence the activity of single synapses but also are key elements in the experience-dependent wiring of brain circuits.


Asunto(s)
Astrocitos/fisiología , Período Crítico Psicológico , Plasticidad Neuronal , Corteza Visual/crecimiento & desarrollo , Animales , Astrocitos/metabolismo , Conexina 30/metabolismo , Activación Enzimática , GTP Fosfohidrolasas/metabolismo , Interneuronas/metabolismo , Interneuronas/fisiología , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Sinapsis/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
8.
Cell Rep ; 32(8): 108076, 2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32846133

RESUMEN

Local translation is a conserved mechanism conferring cells the ability to quickly respond to local stimuli. In the brain, it has been recently reported in astrocytes, whose fine processes contact blood vessels and synapses. Yet the specificity and regulation of astrocyte local translation remain unknown. We study hippocampal perisynaptic astrocytic processes (PAPs) and show that they contain the machinery for translation. Using a refined immunoprecipitation technique, we characterize the entire pool of ribosome-bound mRNAs in PAPs and compare it with the one expressed in the whole astrocyte. We find that a specific pool of mRNAs is highly polarized at the synaptic interface. These transcripts encode an unexpected molecular repertoire, composed of proteins involved in iron homeostasis, translation, cell cycle, and cytoskeleton. Remarkably, we observe alterations in global RNA distribution and ribosome-bound status of some PAP-enriched transcripts after fear conditioning, indicating the role of astrocytic local translation in memory and learning.


Asunto(s)
Astrocitos/metabolismo , Miedo/psicología , Plasticidad Neuronal/fisiología , Animales , Humanos , Ratones
9.
Sci Transl Med ; 10(443)2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29848662

RESUMEN

Epilepsies are characterized by recurrent seizures, which disrupt normal brain function. Alterations in neuronal excitability and excitation-inhibition balance have been shown to promote seizure generation, yet molecular determinants of such alterations remain to be identified. Pannexin channels are nonselective, large-pore channels mediating extracellular exchange of neuroactive molecules. Recent data suggest that these channels are activated under pathological conditions and regulate neuronal excitability. However, whether pannexin channels sustain or counteract chronic epilepsy in human patients remains unknown. We studied the impact of pannexin-1 channel activation in postoperative human tissue samples from patients with epilepsy displaying epileptic activity ex vivo. These samples were obtained from surgical resection of epileptogenic zones in patients suffering from lesional or drug-resistant epilepsy. We found that pannexin-1 channel activation promoted seizure generation and maintenance through adenosine triphosphate signaling via purinergic 2 receptors. Pharmacological inhibition of pannexin-1 channels with probenecid or mefloquine-two medications currently used for treating gout and malaria, respectively-blocked ictal discharges in human cortical brain tissue slices. Genetic deletion of pannexin-1 channels in mice had anticonvulsant effects when the mice were exposed to kainic acid, a model of temporal lobe epilepsy. Our data suggest a proepileptic role of pannexin-1 channels in chronic epilepsy in human patients and that pannexin-1 channel inhibition might represent an alternative therapeutic strategy for treating lesional and drug-resistant epilepsies.


Asunto(s)
Encéfalo/metabolismo , Encéfalo/patología , Conexinas/metabolismo , Epilepsia/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Convulsiones/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Corteza Cerebral/patología , Modelos Animales de Enfermedad , Epilepsia/tratamiento farmacológico , Epilepsia/patología , Epilepsia del Lóbulo Temporal/metabolismo , Epilepsia del Lóbulo Temporal/patología , Humanos , Ácido Kaínico , Mefloquina/farmacología , Mefloquina/uso terapéutico , Ratones , Probenecid/farmacología , Probenecid/uso terapéutico , Convulsiones/tratamiento farmacológico , Convulsiones/patología , Transducción de Señal/efectos de los fármacos
10.
Sci Rep ; 7(1): 5496, 2017 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-28710408

RESUMEN

Epilepsy is a neurological condition that affects 1% of the world population. Conventional treatments of epilepsy use drugs targeting neuronal excitability, inhibitory or excitatory transmission. Yet, one third of patients presents an intractable form of epilepsy and fails to respond to pharmacological anti-epileptic strategies. The ketogenic diet is a well-established non-pharmacological treatment that has been proven to be effective in reducing seizure frequency in the pharmaco-resistant patients. This dietary solution is however extremely restrictive and can be associated with complications caused by the high [fat]:[carbohydrate + protein] ratio. Recent advances suggest that the traditional 4:1 ratio of the ketogenic diet is not a requisite for its therapeutic effect. We show here that combining nutritional strategies targeting specific amino-acids, carbohydrates and fatty acids with a low [fat]:[proteins + carbohydrates] ratio also reduces excitatory drive and protects against seizures to the same extent as the ketogenic diet. Similarly, the morphological and molecular correlates of temporal lobe seizures were reduced in animals fed with the combined diet. These results provide evidence that low-fat dietary strategies more palatable than the ketogenic diet could be useful in epilepsy.


Asunto(s)
Dieta Cetogénica , Fenómenos Fisiológicos de la Nutrición , Convulsiones/prevención & control , Enfermedad Aguda , Animales , Enfermedad Crónica , Masculino , Ratones Endogámicos C57BL , Convulsiones/fisiopatología , Transmisión Sináptica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...