Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 122023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37261432

RESUMEN

Matrix remodeling is a salient feature of idiopathic pulmonary fibrosis (IPF). Targeting cells driving matrix remodeling could be a promising avenue for IPF treatment. Analysis of transcriptomic database identified the mesenchymal transcription factor PRRX1 as upregulated in IPF. PRRX1, strongly expressed by lung fibroblasts, was regulated by a TGF-ß/PGE2 balance in vitro in control and IPF human lung fibroblasts, while IPF fibroblast-derived matrix increased PRRX1 expression in a PDGFR-dependent manner in control ones. PRRX1 inhibition decreased human lung fibroblast proliferation by downregulating the expression of S phase cyclins. PRRX1 inhibition also impacted TGF-ß driven myofibroblastic differentiation by inhibiting SMAD2/3 phosphorylation through phosphatase PPM1A upregulation and TGFBR2 downregulation, leading to TGF-ß response global decrease. Finally, targeted inhibition of Prrx1 attenuated fibrotic remodeling in vivo with intra-tracheal antisense oligonucleotides in bleomycin mouse model of lung fibrosis and ex vivo using human and mouse precision-cut lung slices. Our results identified PRRX1 as a key mesenchymal transcription factor during lung fibrogenesis.


Asunto(s)
Fibrosis Pulmonar Idiopática , Factores de Transcripción , Ratones , Animales , Humanos , Proliferación Celular , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteínas de Homeodominio/genética , Proteína Fosfatasa 2C
2.
EMBO Mol Med ; 14(3): e15295, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35156321

RESUMEN

Lineage dedifferentiation toward a mesenchymal-like state displaying myofibroblast and fibrotic features is a common mechanism of adaptive and acquired resistance to targeted therapy in melanoma. Here, we show that the anti-fibrotic drug nintedanib is active to normalize the fibrous ECM network, enhance the efficacy of MAPK-targeted therapy, and delay tumor relapse in a preclinical model of melanoma. Acquisition of this resistant phenotype and its reversion by nintedanib pointed to miR-143/-145 pro-fibrotic cluster as a driver of this mesenchymal-like phenotype. Upregulation of the miR-143/-145 cluster under BRAFi/MAPKi therapy was observed in melanoma cells in vitro and in vivo and was associated with an invasive/undifferentiated profile. The 2 mature miRNAs generated from this cluster, miR-143-3p and miR-145-5p, collaborated to mediate transition toward a drug-resistant undifferentiated mesenchymal-like state by targeting Fascin actin-bundling protein 1 (FSCN1), modulating the dynamic crosstalk between the actin cytoskeleton and the ECM through the regulation of focal adhesion dynamics and mechanotransduction pathways. Our study brings insights into a novel miRNA-mediated regulatory network that contributes to non-genetic adaptive drug resistance and provides proof of principle that preventing MAPKi-induced pro-fibrotic stromal response is a viable therapeutic opportunity for patients on targeted therapy.


Asunto(s)
Indoles/farmacología , Melanoma , MicroARNs , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Humanos , Mecanotransducción Celular , Melanoma/tratamiento farmacológico , Melanoma/genética , MicroARNs/genética , MicroARNs/metabolismo , Proteínas de Microfilamentos/metabolismo , Recurrencia Local de Neoplasia
3.
Exp Dermatol ; 28(8): 961-967, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31173650

RESUMEN

Acne is the most common inflammatory skin disease, affecting up to 85% of the 11-30 years old world population. Skin microbiota appears as a key player involved in several skin dermatoses physiopathology. Here, we show that inflammatory skin is associated with changes in the skin microbiota composition on the back of severe acne patients but also on the face of patients where acne was scored as mild to moderate, comparing with healthy controls. Changes were observed particularly on skin commensals Propionibacteriaceae, Staphylococcaceae and Enterococcaceae families, suggesting the importance of the balance between skin commensals to maintain skin homeostasis and control skin inflammatory process.


Asunto(s)
Acné Vulgar/microbiología , Dorso/microbiología , Cara/microbiología , Microbiota , Piel/microbiología , Adolescente , Adulto , Estudios de Casos y Controles , Humanos , Adulto Joven
4.
J Dermatol Sci ; 2018 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-29779986

RESUMEN

BACKGROUND: Actinic keratoses (AK) are proliferations of neoplastic keratinocytes in the epidermis resulting from cumulative exposure to ultraviolet radiation (UVR), which are liable to transform into squamous cell carcinoma (SCC). Organ Transplant Recipients (OTR) have an increased risk of developing SCC as a consequence of long-term immunosuppressive therapy. The aim of this study was to determine the molecular signature of AKs from OTR prior to treatment with methyl aminolevulinate-photodynamic therapy (MAL-PDT), and to assess what impact the treatment has on promoting remodeling of the photo-damaged skin. METHODS: Seven patients were enrolled on a clinical trial to assess the effect of MAL-PDT with biopsies taken at screening prior to the first treatment session (week 1), and six weeks after completion of final treatment (week 18). Whole-genome gene expression analysis was carried out on skin biopsies isolated from an AK lesion, an area surrounding the lesion, and a non-sun exposed region of the body. Quantitative PCR was utilized to confirm the differential expression of key genes. RESULTS: MAL-PDT treatment corrected abnormal proliferation-related gene profiles, corrected aberrantly expressed cancer-associated genes and induced expression of dermal extracellular matrix genes in photo-exposed skin. CONCLUSION: The efficacy of the MAL-PDT on AK lesions was confirmed at whole-genome gene expression level. A transcriptional signature of remodeling, identified through assessing the effect of MAL-PDT on photodamaged skin, supports the use of MAL-PDT for treating photodamaged skin and field cancerized areas.

5.
J Invest Dermatol ; 135(12): 3105-3114, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26322948

RESUMEN

Vitiligo affects 1% of the worldwide population. Halting disease progression and repigmenting the lesional skin represent the two faces of therapeutic challenge in vitiligo. We performed transcriptome analysis on lesional, perilesional, and non-depigmented skin from vitiligo patients and on matched skin from healthy subjects. We found a significant increase in CXCL10 in non-depigmented and perilesional vitiligo skin compared with levels in healthy control skin; however, neither CXCL10 nor other immune factors were deregulated in depigmented vitiligo skin. Interestingly, the WNT pathway, which is involved in melanocyte differentiation, was altered specifically in vitiligo skin. We demonstrated that oxidative stress decreases WNT expression/activation in keratinocytes and melanocytes. We developed an ex vivo skin model and confirmed the decrease activation of the WNT pathway in human skin subjected to oxidative stress. Finally, using pharmacological agents that activate the WNT pathway, we treated ex vivo depigmented skin from vitiligo patients and successfully induced differentiation of resident stem cells into pre-melanocytes. Our results shed light on the previously unrecognized role of decreased WNT activation in the prevention of melanocyte differentiation in depigmented vitiligo skin. Furthermore, these results support further clinical exploration of WNT agonists to repigment vitiligo lesions.


Asunto(s)
Perfilación de la Expresión Génica , Pigmentación de la Piel , Piel/metabolismo , Vitíligo/fisiopatología , Vía de Señalización Wnt , Quimiocina CXCL10/análisis , Humanos , Factor de Unión 1 al Potenciador Linfoide/fisiología , Estrés Oxidativo , Vitíligo/etiología
6.
Stem Cells Int ; 2015: 592090, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25733979

RESUMEN

Animal study findings have revealed that individual fat depots are not functionally equivalent and have different embryonic origins depending on the anatomic location. Mouse bone regeneration studies have also shown that it is essential to match the Hox code of transplanted cells and host tissues to achieve correct repair. However, subcutaneous fat depots from any donor site are often used in autologous fat grafting. Our study was thus carried out to determine the embryonic origins of human facial (chin) and limb (knee) fat depots and whether they had similar features and molecular matching patterns. Paired chin and knee fat depots were harvested from 11 subjects and gene expression profiles were determined by DNA microarray analyses. Adipose-derived stromal cells (ASCs) from both sites were isolated and analyzed for their capacity to proliferate, form clones, and differentiate. Chin and knee fat depots expressed a different HOX code and could have different embryonic origins. ASCs displayed a different phenotype, with chin-ASCs having the potential to differentiate into brown-like adipocytes, whereas knee-ASCs differentiated into white adipocytes. These results highlighted different features for these two fat sites and indicated that donor site selection might be an important factor to be considered when applying adipose tissue in cell-based therapies.

7.
Mol Pharmacol ; 76(4): 778-90, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19602573

RESUMEN

Among mammalian secreted phospholipases A2 (sPLA(2)s), the group X enzyme has the most potent hydrolyzing capacity toward phosphatidylcholine, the major phospholipid of cell membrane and lipoproteins. This enzyme has recently been implicated in chronic inflammatory diseases such as atherosclerosis and asthma and may also play a role in colon tumorigenesis. We show here that group X sPLA(2) [mouse (m)GX] is one of the most highly expressed PLA(2) in the mouse colon and that recombinant mouse and human enzymes stimulate proliferation and mitogen-activated protein kinase activation of various colon cell lines, including Colon-26 cancer cells. Among various recombinant sPLA(2)s, mGX is the most potent enzyme to stimulate cell proliferation. Based on the use of sPLA(2) inhibitors, catalytic site mutants, and small interfering RNA silencing of cytosolic PLA(2)alpha and M-type sPLA(2) receptor, we demonstrate that mGX promotes cell proliferation independently of the receptor and via its intrinsic catalytic activity and production of free arachidonic acid and lysophospholipids, which are mitogenic by themselves. mGX can also elicit the production of large amounts of prostaglandin E2 and other eicosanoids from Colon-26 cells, but these lipid mediators do not play a role in mGX-induced cell proliferation because inhibitors of cyclooxygenases and lipoxygenases do not prevent sPLA(2) mitogenic effects. Together, our results indicate that group X sPLA(2) may play an important role in colon tumorigenesis by promoting cancer cell proliferation and releasing various lipid mediators involved in other key events in cancer progression.


Asunto(s)
Proliferación Celular , Neoplasias del Colon/patología , Lípidos/biosíntesis , Fosfolipasas A2/farmacología , Animales , Secuencia de Bases , Biocatálisis , Línea Celular Tumoral , Neoplasias del Colon/metabolismo , Humanos , Hibridación in Situ , Ratones , ARN Interferente Pequeño , Proteínas Recombinantes/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
Biochim Biophys Acta ; 1791(2): 92-102, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19130898

RESUMEN

Macrophages are a major source of lipid mediators in the human lung. Expression and contribution of cytosolic (cPLA(2)) and secreted phospholipases A(2) (sPLA(2)) to the generation of lipid mediators in human macrophages are unclear. We investigated the expression and role of different PLA(2)s in the production of lipid mediators in primary human lung macrophages. Macrophages express the alpha, but not the zeta isoform of group IV and group VIA cPLA(2) (iPLA(2)). Two structurally-divergent inhibitors of group IV cPLA(2) completely block arachidonic acid release by macrophages in response to non-physiological (Ca(2+) ionophores and phorbol esters) and physiological agonists (lipopolysaccharide and Mycobacterium protein derivative). These inhibitors also reduce by 70% the synthesis of platelet-activating factor by activated macrophages. Among the full set of human sPLA(2)s, macrophages express group IIA, IID, IIE, IIF, V, X and XIIA, but not group IB and III enzymes. Me-Indoxam, a potent and cell impermeable inhibitor of several sPLA(2)s, has no effect on arachidonate release or platelet-activating factor production. Agonist-induced exocytosis is not influenced by cPLA(2) inhibitors at concentrations that block arachidonic acid release. Our results indicate that human macrophages express cPLA(2)-alpha, iPLA(2) and several sPLA(2)s. Cytosolic PLA(2)-alpha is the major enzyme responsible for lipid mediator production in human macrophages.


Asunto(s)
Ácido Araquidónico/metabolismo , Fosfolipasas A2 Grupo IV/fisiología , Macrófagos Alveolares/enzimología , Factor de Activación Plaquetaria/biosíntesis , Carbamatos/farmacología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Exocitosis/efectos de los fármacos , Fluoroinmunoensayo , Glucuronidasa/metabolismo , Fosfolipasas A2 Grupo IV/antagonistas & inhibidores , Humanos , Immunoblotting , Indolizinas/farmacología , Ionóforos/farmacología , Lipopolisacáridos/farmacología , Macrófagos Alveolares/efectos de los fármacos , Reacción en Cadena de la Polimerasa
9.
Eur J Med Chem ; 40(9): 850-61, 2005 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16084626

RESUMEN

Starting from 4-tetradecyloxybenzamidine (PMS815), a non-specific inhibitor of GI and GII PLA2s, we report in this work the discovery of the specificity through design, synthesis and structure-activity relationships studies of different kinds of PMS815 derivatives. The leading compound, 4,5-dihydro-3-(4-tetradecyloxybenzyl)-1,2,4-4H-oxadiazol-5-one (9b, PMS1062) exhibits a micromolar IC50 towards three group II PLA2s, while inactive towards four group I and one group III enzymes in two in vitro enzymatic assay conditions. It is also able to block the PLA2-II activities induced by LPS and IL-6 in HepG2 cell line and no cytotoxicity is observed when PMS1062 is tested up to a concentration of 100 microM in two different cell lines (A549 and LLC-PK1).


Asunto(s)
Benzamidinas/química , Benzamidinas/farmacología , Diseño de Fármacos , Inhibidores Enzimáticos/química , Fosfolipasas A/antagonistas & inhibidores , Animales , Benzamidinas/síntesis química , Plaquetas/enzimología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Fosfolipasas A2 Grupo II , Humanos , Concentración 50 Inhibidora , Estructura Molecular , Oxadiazoles/química , Páncreas/enzimología , Fosfolipasas A2 , Relación Estructura-Actividad , Porcinos , Tetrazoles/química
10.
J Biol Chem ; 279(24): 25024-38, 2004 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-15007070

RESUMEN

Stable expression of human groups IIA and X secreted phospholipases A(2) (hGIIA and hGX) in CHO-K1 and HEK293 cells leads to serum- and interleukin-1beta-promoted arachidonate release. Using mutant CHO-K1 cell lines, it is shown that this arachidonate release does not require heparan sulfate proteoglycan- or glycosylphosphatidylinositol-anchored proteins. It is shown that the potent secreted phospholipase A(2) inhibitor Me-Indoxam is cell-impermeable. By use of Me-Indoxam and the cell-impermeable, secreted phospholipase A(2) trapping agent heparin, it is shown that hGIIA liberates free arachidonate prior to secretion from the cell. With hGX-transfected CHO-K1 cells, arachidonate release occurs before and after enzyme secretion, whereas all of the arachidonate release from HEK293 cells occurs prior to enzyme secretion. Immunocytochemical studies by confocal laser and electron microscopies show localization of hGIIA to the cell surface and Golgi compartment. Additional results show that the interleukin-1beta-dependent release of arachidonate is promoted by secreted phospholipase A(2) expression and is completely dependent on cytosolic (group IVA) phospholipase A(2). These results along with additional data resolve the paradox that efficient arachidonic acid release occurs with hGIIA-transfected cells, and yet exogenously added hGIIA is poorly able to liberate arachidonic acid from mammalian cells.


Asunto(s)
Ácido Araquidónico/metabolismo , Citosol/enzimología , Fosfolipasas A/fisiología , Animales , Células CHO , Cricetinae , Glicosaminoglicanos/fisiología , Glicosilfosfatidilinositoles/fisiología , Fosfolipasas A2 Grupo II , Fosfolipasas A2 Grupo IV , Fosfolipasas A2 Grupo X , Heparina/farmacología , Humanos , Peróxido de Hidrógeno/farmacología , Microscopía Confocal , Fosfolipasas A/análisis , Transfección
11.
Biochem J ; 365(Pt 2): 505-11, 2002 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-11936952

RESUMEN

Human group IIA secretory phospholipase A(2) (hGIIA sPLA(2)) is reported to be involved in inflammation, since its expression level is enhanced under various inflammatory conditions. In this work, we report the total chemical synthesis of this enzyme (124 amino acids) by solid-phase method. The identity of the protein, in denatured or folded (7 disulphide bonds) forms, was confirmed by electrospray MS. Synthetic sPLA(2) possesses the same circular dichroism spectrum, enzymic activity in hydrolysing different phospholipid substrates, and inhibitory effect in thrombin formation from prothrombinase complex as the recombinant sPLA(2). Furthermore, LY311727, a reported specific hGIIA sPLA(2) inhibitor, is able to inhibit the synthetic and the recombinant enzymes with the same efficiency. This study demonstrates that chemically continuous solid phase synthesis is an alternative and less time-consuming approach to producing small, structurally folded and fully active proteins of up to 124 amino acids, such as hGIIA sPLA(2). Moreover, this technique provides more flexibility in analogue synthesis to elucidate their physiological functions and pathological effects.


Asunto(s)
Fosfolipasas A/síntesis química , Fosfolipasas A/farmacología , Secuencia de Aminoácidos , Cromatografía Líquida de Alta Presión , Humanos , Datos de Secuencia Molecular , Fosfolipasas A/metabolismo , Fosfolipasas A2 , Pliegue de Proteína , Estructura Secundaria de Proteína , Proteínas Recombinantes/síntesis química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Espectrometría de Masa por Ionización de Electrospray
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...