Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Glob Antimicrob Resist ; 37: 37-41, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38408561

RESUMEN

BACKGROUND: The rapid and global spread of Escherichia coli carrying mcr-type genes at the human-animal-environmental interface has become a serious global public health problem. OBJECTIVE: To perform a genomic investigation of a colistin-resistant E. coli strain (14005RM) causing urinary tract infection, using a hybrid de novo assembly of Illumina/Nanopore sequence data, presenting phylogenomic insights into the relationship with mcr-1-positive strains circulating at the human-animal-environmental interface, in Brazil. METHODS: Genomic DNA was sequenced using both the Illumina NexSeq and Nanopore MinION platforms. De novo hybrid assembly was performed by Unicycler. Genomic data were assessed by in silico prediction and bioinformatic tools. RESULTS: The genome assembly size was 5 333 039 bp. The mcr-1.5-positive E. coli strain 14005RM belongs to the sequence type ST354 and presented a broad resistome (antibiotics, heavy metals, disinfectants, and glyphosate) and virulome. The mcr-1.5 gene was carried by an IncI2 plasmid (p14005RM, sizing 65,458 kb). Full genome SNP-based phylogenetic analysis reveals that mcr-1.5-producing E. coli strain 14005RM is highly related (> 98% identity) to colistin-resistant mcr-1.1-positive ST354 lineages associated with urinary tract infections in Brazil since 2015. CONCLUSION: Mobile colistin resistance within the Brazilian One Health microbiosphere is mediated by mcr gene variants propagated by IncX4, IncHI2, and IncI2 plasmids, circulating among global clones of E. coli.

2.
Pathogens ; 13(1)2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38251370

RESUMEN

Migratory birds have contributed to the dissemination of multidrug-resistant (MDR) bacteria across the continents. A CTX-M-2-producing Escherichia coli was isolated from a black skimmer (Rynchops niger) in Southeast Brazil. The whole genome was sequenced using the Illumina NextSeq platform and de novo assembled by CLC. Bioinformatic analyses were carried out using tools from the Center for Genomic Epidemiology. The genome size was estimated at 4.9 Mb, with 4790 coding sequences. A wide resistome was detected, with genes encoding resistance to several clinically significant antimicrobials, heavy metals, and biocides. The blaCTX-M-2 gene was inserted in an In229 class 1 integron inside a ∆TnAs3 transposon located in an IncHI2/ST2 plasmid. The strain was assigned to ST5506, CH type fumC19/fimH32, serotype O8:K87, and phylogroup B1. Virulence genes associated with survival in acid conditions, increased serum survival, and adherence were also identified. These data highlight the role of migratory seabirds as reservoirs and carriers of antimicrobial resistance determinants and can help to elucidate the antimicrobial resistance dynamics under a One Health perspective.

3.
One Health ; 17: 100594, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37448770

RESUMEN

The spread of carbapenemase-producing Klebsiella pneumoniae beyond hospital settings is a global critical issue within a public health and One Health perspective. Another worrisome concern is the convergence of virulence and resistance in healthcare-associated lineages of K. pneumoniae leading to unfavorable clinical outcomes. During a surveillance study of WHO critical priority pathogens circulating in an impacted urban river in São Paulo, Brazil, we isolate two hypermucoviscous and multidrug-resistant K. pneumoniae strains (PINH-4250 and PINH-4900) from two different locations near to medical centers. Genomic investigation revealed that both strains belonged to the global high-risk sequence type (ST) ST11, carrying the blaKPC-2 carbapenemase gene, besides other medically important antimicrobial resistance determinants. A broad virulome was predicted and associated with hypervirulent behavior in the Galleria mellonella infection model. Comparative phylogenomic analysis of PINH-4250 and PINH-4900 along to an international collection of publicly available genomes of K. pneumoniae ST11 revealed that both environmental strains were closely related to hospital-associated K. pneumoniae strains recovered from clinical samples between 2006 and 2018, in São Paulo city. Our findings support that healthcare-associated KPC-2-positive K. pneumoniae of ST11 clone has successfully expanded beyond hospital settings. In summary, aquatic environments can become potential sources of international clones of K. pneumoniae displaying carbapenem resistance and hypervirulent behaviors, which is a critical issue within a One Health perspective.

4.
One Health ; 17: 100586, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37415721

RESUMEN

Wild birds have emerged as novel reservoirs and potential spreaders of antibiotic-resistant priority pathogens, being proposed as sentinels of anthropogenic activities related to the use of antimicrobial compounds. The aim of this study was to investigate the occurrence and genomic features of extended-spectrum ß-lactamase (ESBL)-producing bacteria in wild birds in South America. In this regard, we have identified two ESBL (CTX-M-55 and CTX-M-65)-positive Escherichia coli (UNB7 and GP188 strains) colonizing Creamy-bellied Thrush (Turdus amaurochalinus) and Variable Hawk (Geranoaetus polyosoma) inhabiting synanthropic and wildlife environments from Brazil and Chile, respectively. Whole-genome sequence (WGS) analysis revealed that E. coli UNB7 and GP188 belonged to the globally disseminated clone ST602, carrying a wide resistome against antibiotics (ß-lactams), heavy metals (arsenic, copper, mercury), disinfectants (quaternary ammonium compounds), and pesticides (glyphosate). Additionally, E. coli UNB7 and GP188 strains harbored virulence genes encoding hemolysin E, type II and III secretion systems, increased serum survival, adhesins and siderophores. SNP-based phylogenomic analysis, using an international genome database, revealed genomic relatedness (19-363 SNP differences) of GP188 with livestock and poultry strains, and genomic relatedness (61-318 differences) of UNB7 with environmental, human and livestock strains (Table S1), whereas phylogeographical analysis confirmed successful expansion of ST602 as a global clone of One Health concern. In summary, our results support that ESBL-producing E. coli ST602 harboring a wide resistome and virulome have begun colonizing wild birds in South America, highlighting a potential new reservoir of critical priority pathogens.

5.
One Health ; 16: 100476, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36691392

RESUMEN

WHO priority pathogens have disseminated beyond hospital settings and are now being detected in urban and wild animals worldwide. In this regard, synanthropic animals such as urban pigeons (Columba livia) and rodents (Rattus rattus, Rattus norvegicus and Mus musculus) are of interest to public health due to their role as reservoirs of pathogens that can cause severe diseases. These animals usually live in highly contaminated environments and have frequent interactions with humans, domestic animals, and food chain, becoming sentinels of anthropogenic activities. In this study, we report genomic data of Escherichia coli strains selected for ceftriaxone and ciprofloxacin resistance, isolated from pigeons and black rats. Genomic analysis revealed the occurrence of international clones belonging to ST10, ST155, ST224 and ST457, carrying a broad resistome to beta-lactams, aminoglycosides, trimethoprim/sulfamethoxazole, fluoroquinolones, tetracyclines and/or phenicols. SNP-based phylogenomic investigation confirmed clonal relatedness with high-risk lineages circulating at the human-animal-environmental interface globally. Our results confirm the dissemination of WHO priority CTX-M-positive E. coli in urban rodents and pigeons in Brazil, highlighting potential of these animals as infection sources and hotspot for dissemination of clinically relevant pathogens and their resistance genes, which is a critical issue within a One Health perspective.

6.
Antibiotics (Basel) ; 11(8)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36009996

RESUMEN

This study evaluated the scope and genetic basis of polymyxin-resistant Klebsiella aerogenes in Brazil. Eight polymyxin-resistant and carbapenemase-producing K. aerogenes strains were isolated from patients admitted to the ICU of a tertiary hospital. Bacterial species were identified by automated systems and antimicrobial susceptibility profile was confirmed using broth microdilution. The strains displayed a multidrug resistant profile and were subjected to whole-genome sequencing. Bioinformatic analysis revealed a variety of antimicrobial resistance genes, including the blaKPC-2. No plasmid-mediated colistin resistance gene was identified. Nonetheless, nonsynonymous mutations in mgrB, pmrA, pmrB, and eptA were detected, justifying the colistin resistance phenotype. Virulence genes encoding yersiniabactin, colibactin, and aerobactin were also found, associated with ICEKp4 and ICEKp10, and might be related to the high mortality observed among the patients. In fact, this is the first time ICEKp is identified in K. aerogenes in Brazil. Phylogenetic analysis grouped the strains into two clonal groups, belonging to ST93 and ST16. In summary, the co-existence of antimicrobial resistance and virulence factors is deeply worrying, as it could lead to the emergence of untreatable invasive infections. All these factors reinforce the need for surveillance programs to monitor the evolution and dissemination of multidrug resistant and virulent strains among critically ill patients.

7.
Sci Rep ; 12(1): 5707, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383231

RESUMEN

The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored blaCTX-M-type or blaCMY-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species.


Asunto(s)
Bivalvos , Escherichia coli , Animales , Antibacterianos/farmacología , Células Clonales , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Virulencia/genética , Organización Mundial de la Salud , beta-Lactamasas/genética
8.
Arch Microbiol ; 204(4): 202, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35244778

RESUMEN

Klebsiella pneumoniae is an opportunistic pathogen that can cause several infections, mainly in hospitalised or immunocompromised individuals. The spread of K. pneumoniae emerging virulent and multidrug-resistant clones is a worldwide concern and its identification is crucial to control these strains especially in hospitals. This article reports data related to multi-resistant K. pneumoniae strains, isolated from inpatients in the city of Manaus, Brazil, harbouring virulence and antimicrobial-resistance genes, including high-risk international clones belonging to clonal group (CG) 258. Twenty-one strains isolated from different patients admitted to four hospitals in the city of Manaus, located in the state of Amazonas, Northern Brazil (Amazon Rainforest region) were evaluated. The majority of strains (61.9% n = 13) were classified as multidrug-resistant (MDR), and five strains (23.8%) as extensively drug-resistant (XDR). Several virulence and antimicrobial-resistance genes were found among the strains and eight strains (38.1%) presented the hyper-mucoviscous phenotype. MLST analysis demonstrated a great diversity of STs among the strains, totaling 12 different STs (ST11, ST23, ST198, ST277, ST307, ST340, ST378, ST462, ST502, ST3991, ST3993 and ST5209). Three of these (ST11, ST23 and ST340) belong to CG258.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Antibacterianos/farmacología , Brasil/epidemiología , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Infecciones por Klebsiella/epidemiología , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Estudios Retrospectivos , beta-Lactamasas/genética
9.
Microbiol Spectr ; 10(2): e0125621, 2022 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-35234515

RESUMEN

The dissemination of carbapenem-resistant and third generation cephalosporin-resistant pathogens is a critical issue that is no longer restricted to hospital settings. The rapid spread of critical priority pathogens in Brazil is notably worrying, considering its continental dimension, the diversity of international trade, livestock production, and human travel. We conducted a nationwide genomic investigation under a One Health perspective that included Escherichia coli strains isolated from humans and nonhuman sources, over 45 years (1974-2019). One hundred sixty-seven genomes were analyzed extracting clinically relevant information (i.e., resistome, virulome, mobilome, sequence types [STs], and phylogenomic). The endemic status of extended-spectrum ß-lactamase (ESBL)-positive strains carrying a wide diversity of blaCTX-M variants, and the growing number of colistin-resistant isolates carrying mcr-type genes was associated with the successful expansion of international ST10, ST38, ST115, ST131, ST354, ST410, ST648, ST517, and ST711 clones; phylogenetically related and shared between human and nonhuman hosts, and polluted aquatic environments. Otherwise, carbapenem-resistant ST48, ST90, ST155, ST167, ST224, ST349, ST457, ST648, ST707, ST744, ST774, and ST2509 clones from human host harbored blaKPC-2 and blaNDM-1 genes. A broad resistome to other clinically relevant antibiotics, hazardous heavy metals, disinfectants, and pesticides was further predicted. Wide virulome associated with invasion/adherence, exotoxin and siderophore production was related to phylogroup B2. The convergence of wide resistome and virulome has contributed to the persistence and rapid spread of international high-risk clones of critical priority E. coli at the human-animal-environmental interface, which must be considered a One Health challenge for a post-pandemic scenario. IMPORTANCE A One Health approach for antimicrobial resistance must integrate whole-genome sequencing surveillance data of critical priority pathogens from human, animal and environmental sources to track hot spots and routes of transmission and developing effective prevention and control strategies. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we present genomic data of WHO critical priority carbapenemase-resistant, ESBL-producing, and/or colistin-resistant Escherichia coli strains isolated from humans and nonhuman sources in Brazil, a country with continental proportions and high levels of antimicrobial resistance. The present study provided evidence of epidemiological and clinical interest, highlighting that the convergence of wide virulome and resistome has contributed to the persistence and rapid spread of international high-risk clones of E. coli at the human-animal-environmental interface, which must be considered a One Health threat that requires coordinated actions to reduce its incidence in humans and nonhuman hosts.


Asunto(s)
Infecciones por Escherichia coli , Salud Única , Animales , Antibacterianos/farmacología , Brasil/epidemiología , Carbapenémicos/farmacología , Colistina , Comercio , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli , Infecciones por Escherichia coli/epidemiología , Genómica , Internacionalidad , Pruebas de Sensibilidad Microbiana , Pandemias , Organización Mundial de la Salud , beta-Lactamasas/genética
10.
Sci Total Environ ; 823: 153590, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35122850

RESUMEN

Mining dam disasters contribute to the contamination of aquatic environments, impacting associated ecosystems and wildlife. A multidrug-resistant Escherichia coli strain (B2C) was isolated from a river water sample in Brazil after the Mariana mining dam disaster. The genome was sequenced using the Illumina MiSeq platform, and de novo assembled using Unicycler. Resistome, virulome, and plasmidome were predicted using bioinformatics tools. Data analysis revealed that E. coli B2C belonged to sequence type ST219 and phylogroup E. Strikingly, a broad resistome (antibiotics, hazardous heavy metals, and biocides) was predicted, including the presence of the clinically relevant blaCTX-M-2 extended-spectrum ß-lactamase (ESBL) gene, qacE∆1 efflux pump gene, and the mer (mercury resistance) operon. SNP-based analysis revealed that environmental E. coli B2C was clustered along to ESBL-negative E. coli strains of ST219 isolated between 1980 and 2021 from livestock in the United States of America. Acquisition of clinically relevant genes by ST219 seems to be a recent genetic event related to anthropogenic activities, where polluted water environments may contribute to its dissemination at the human-animal-environment interface. In addition, the presence of genes conferring resistance to heavy metals could be related to environmental pollution from mining activities. Antimicrobial resistance genes could be essential biomarkers of environmental exposure to human and mining pollution.


Asunto(s)
Desastres , Proteínas de Escherichia coli , Mercurio , Animales , Antibacterianos/farmacología , Brasil , Farmacorresistencia Bacteriana Múltiple/genética , Ecosistema , Escherichia coli , Proteínas de Escherichia coli/genética , Mercurio/toxicidad , beta-Lactamasas/genética
11.
Braz J Microbiol ; 53(1): 251-254, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35032310

RESUMEN

Hemodialysis patients are at high risk for bloodstream infections associated with highest morbidity and mortality rates. Bacterial species not commonly related to such infections has been hardly identified by traditional methods. Pseudocitrobacter is a novel genus of the order Enterobacterales that is associated with carbapenemase genes and nosocomial infection. In this context, we have investigated nine cases of bloodstream infections by carbapenem-resistant Gram-negative bacilli in patients assisted at a hemodialysis unit in Brazil. The infections were caused by a metallo-ß-lactamase (IMP-1)-producing clone (> 90% XbaI-PFGE similarity) of Pseudocitrobacter vendiensis, displaying a multidrug-resistant profile to broad-spectrum cephalosporins, carbapenems, chloramphenicol, and trimethoprim-sulfamethoxazole. S1-PFGE and Southern blot hybridization revealed that blaIMP-1 was carried by a 200-kb IncC/ST3 plasmid. Patients were successfully treated with amikacin, and strict disinfection procedures and hand washing protocols were reinforced. We report the emergence of P. vendiensis, a recently described species of the genus, in bloodstream infections of patients undergoing hemodialysis. Considering the epidemic potential of carbapenemase-producing Enterobacterales in hospital settings, surveillance of this emerging pathogen is of utmost importance.


Asunto(s)
Carbapenémicos , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Proteínas Bacterianas/genética , beta-Lactamasas/genética , Carbapenémicos/farmacología , Enterobacteriaceae , Unidades de Hemodiálisis en Hospital , Pruebas de Sensibilidad Microbiana , Diálisis Renal
12.
Genomics ; 114(1): 378-383, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34923088

RESUMEN

Convergence of resistance and virulence in Klebsiella pneumoniae is a critical public health issue worldwide. A multidrug-resistant CTX-M-15-producing K. pneumoniae (TIES-4900 strain) was isolated from a highly impacted urban river, in Brazil. The genome was sequenced by MiSeq Illumina platform and de novo assembled using Unicycler. In silico prediction was accomplished by bioinformatics tools. The size of the genome is 5.4 Mb with 5145 protein-coding genes. TIES-4900 strain belonged to the sequence type ST15, yersiniabactin sequence type YbST10, ICEKp4, KL24 (wzi-24) and O1v1 locus. Phylogenomics confirmed genomic relatedness with ST15 clones from human and animal hosts. Convergence of broad resistome (antibiotics, heavy-metals and biocides) and virulome, including the Kpi pilus system involved in host-pathogen interaction and persistence of ST15 clone to hospital environments, were predicted. Virulent behavior was confirmed in the Galleria mellonella infection model. This study may give genomic insights on the spread of critical-priority WHO pathogens beyond hospital settings.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Animales , Antibacterianos/farmacología , Brasil , Células Clonales , Farmacorresistencia Bacteriana Múltiple/genética , Genómica , Ríos , beta-Lactamasas/genética
13.
Sci Rep, v. 12, 5707, abr. 2022
Artículo en Inglés | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4305

RESUMEN

The global spread of critical-priority antimicrobial-resistant Enterobacterales by food is a public health problem. Wild-caught seafood are broadly consumed worldwide, but exposure to land-based pollution can favor their contamination by clinically relevant antimicrobial-resistant bacteria. As part of the Grand Challenges Explorations: New Approaches to Characterize the Global Burden of Antimicrobial Resistance Program, we performed genomic surveillance and cell culture-based virulence investigation of WHO critical priority Enterobacterales isolated from marine bivalves collected in the Atlantic Coast of South America. Broad-spectrum cephalosporin-resistant Klebsiella pneumoniae and Escherichia coli isolates were recovered from eight distinct geographical locations. These strains harbored blaCTX-M-type or blaCMY-type genes. Most of the surveyed genomes confirmed the convergence of wide virulome and resistome (i.e., antimicrobials, heavy metals, biocides, and pesticides resistance). We identified strains belonging to the international high-risk clones K. pneumoniae ST307 and E. coli ST131 carrying important virulence genes, whereas in vitro experiments confirmed the high virulence potential of these strains. Thermolabile and thermostable toxins were identified in some strains, and all of them were biofilm producers. These data point to an alarming presence of resistance and virulence genes in marine environments, which may favor horizontal gene transfer and the spread of these traits to other bacterial species.

14.
Front Microbiol ; 12: 701921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34539602

RESUMEN

The dissemination of antibiotic-resistant priority pathogens beyond hospital settings is both a public health and an environmental problem. In this regard, high-risk clones exhibiting a multidrug-resistant (MDR) or extensively drug-resistant (XDR) phenotype have shown rapid adaptation at the human-animal-environment interface. In this study, we report genomic data and the virulence potential of the carbapenemase, São Paulo metallo-ß-lactamase (SPM-1)-producing Pseudomonas aeruginosa strains (Pa19 and Pa151) isolated from polluted urban rivers, in Brazil. Bioinformatic analysis revealed a wide resistome to clinically relevant antibiotics (carbapenems, aminoglycosides, fosfomycin, sulfonamides, phenicols, and fluoroquinolones), biocides (quaternary ammonium compounds) and heavy metals (copper), whereas the presence of exotoxin A, alginate, quorum sensing, types II, III, and IV secretion systems, colicin, and pyocin encoding virulence genes was associated with a highly virulent behavior in the Galleria mellonella infection model. These results confirm the spread of healthcare-associated critical-priority P. aeruginosa belonging to the MDR sequence type 277 (ST277) clone beyond the hospital, highlighting that the presence of these pathogens in environmental water samples can have clinical implications for humans and other animals.

15.
Pathog Dis ; 79(8)2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34550351

RESUMEN

Emergent hypervirulent Klebsiella pneumoniae has been responsible for severe diseases, representing a serious threat to public health. We report the whole-genome sequencing of a novel ST3994-K2 clone, a single locus variant of ST86 K2, which is considered a worrying hypervirulent clone that emerged in several parts of the world. The strain K. pneumonia Kpi144 was isolated in 2013 from a blood culture of a 69-year-old male patient admitted to a tertiary hospital in Teresina, state of Piauí, northeastern Brazil. The strain was susceptible to 41 antibiotics tested, presented hypermucoviscous phenotype and a virulent behavior was observed in the Galleria mellonella infection model. Moreover, the virulome showed several virulence genes. To the best of our knowledge, this is the first worldwide report of a novel ST3994-K2 K. pneumoniae clone, an SLV of ST86 K2, which is considered a worrying virulent clone that has emerged in several parts of the world, including South America and Brazil.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/fisiología , Genoma Bacteriano , Genómica/métodos , Humanos , Klebsiella pneumoniae/clasificación , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Fenotipo , Filogenia , Virulencia/genética , Factores de Virulencia/genética , Secuenciación Completa del Genoma
16.
J Glob Antimicrob Resist ; 25: 8-13, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33662640

RESUMEN

OBJECTIVES: The global success of carbapenem-resistant pathogens has been attributed to large plasmids carrying blaKPC genes circulating among high-risk clones. In this study, we sequenced the genome of a carbapenem-resistant Escherichia coli strain (Ec351) isolated from a human infection. Phylogenomic analysis based on single nucleotide polymorphisms (SNPs) as well as the comparative resistome and plasmidome of globally disseminated blaKPC-2-positive E. coli strains with identical sequence type (ST) were further investigated. METHODS: Total DNA was sequenced using an Illumina NextSeq 500 platform and was assembled using Unicycler. Genomic data were evaluated through bioinformatics tools available from the Center of Genomic Epidemiology and by in silico analysis. RESULTS: Genomic analysis revealed the convergence of a wide resistome and virulome in E. coli ST648, showing a high-level phylogenetic relationship with a KPC-2-positive ST648 cluster identified in the USA and association with international clade 2. Additionally, the emergence of an IncQ1 small plasmid (pEc351) carrying blaKPC-2 (on an NTEKPC-IId element), aph(3')-VIa, and plasmid regulatory and replication genes in the pandemic clone ST648 is reported. CONCLUSION: Identification of a blaKPC-2-positive IncQ1 plasmid in a high-risk E. coli clone represents rapid adaptation and expansion of these small plasmids encoding carbapenemases to novel bacterial hosts with global distribution, which deserves continued monitoring.


Asunto(s)
Escherichia coli , Pandemias , Antibacterianos/farmacología , Escherichia coli/genética , Genoma Bacteriano , Genómica , Humanos , Filogenia , Plásmidos/genética
17.
Infect Genet Evol ; 91: 104808, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33737229

RESUMEN

The global dissemination of multidrug-resistant Escherichia coli lineages belonging to high- risk clones poses a significant public health threat. Herein we report the identification and genomic profiling of two multidrug-resistant E. coli strains [BL-II-03(2) and BL-II-11(3)] belonging to the O15:H1-D-ST393 (clonal complex 31) worldwide spread clone, isolated from fecal samples of indigenous peoples belonging to two different ethnic groups of remote communities of Brazilian Amazon. Genomic analysis revealed genes and mutations conferring resistance to ß-lactams [blaTEM-1], aminoglycosides [aadA5, aph(3″)-Ib, aph(6)-Id], tetracyclines [tetB], sulfamethoxazole/trimethoprim [sul1, sul2, dfrA17], and fluoroquinolones [gyrA (D87N, S83L), parC (S80I, S57T), parE (L416F)]; and presence of IncQ1, IncFIA, and IncFIB(pB171) plasmids. On the other hand, phylogenomics of globally reported E. coli ST393 assigned E. coli strains BL-II-03(2) and BL-II-11(3) to a cluster comprising human isolates from Australia, Canada, China, Sweden, and United States of America. These results might provide valuable information for understanding dissemination of intercontinental multidrug-resistant clones in remote communities with low levels of antibiotic exposure.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/aislamiento & purificación , Fluoroquinolonas/farmacología , Escherichia coli/clasificación , Escherichia coli/genética , Heces/microbiología , Humanos , Indígenas Sudamericanos , Población Rural
19.
Microb Drug Resist ; 27(5): 585-589, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-32991273

RESUMEN

Serratia fonticola is a human pathogen widely found in the environment, with birds being reported as possible natural hosts. During an epidemiological and genomic surveillance study conducted to monitor the occurrence of extended-spectrum ß-lactamase (ESBL)-producing Enterobacterales in South American wild birds, we identified an ESBL-positive S. fonticola in a fecal sample collected from a Hudsonian Whimbrel, during its non-breeding range on the Pacific Coast of Chile. Whole genome sequencing analysis and "in silico" modeling revealed a novel variant of the class A ESBLs FONA family, designated FONA-7, which shows 96.28% amino acid identity with FONA-6; with amino acid substitutions occurring in the signal peptide sequence (Thr22→Ser), and in the mature protein (Ser39→Asn and Thr227→Ile). This finding denotes that migratory birds can be potential vectors for the transboundary spread of ESBL-producing bacteria, creating a further theoretical risk for the origin of novel plasmid-encoded ß-lactamases.


Asunto(s)
Antibacterianos/farmacología , Proteínas Bacterianas/genética , Enfermedades de las Aves/microbiología , Serratia/efectos de los fármacos , beta-Lactamasas/genética , Animales , Aves/microbiología , Chile/epidemiología , Vectores de Enfermedades , Heces , Polimorfismo Genético , Serratia/enzimología , Serratia/genética , Secuenciación Completa del Genoma
20.
J Glob Antimicrob Resist ; 22: 756-758, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32712382

RESUMEN

OBJECTIVE: Carbapenemase-producing Acinetobacter baumannii has been recognized as a critical priority pathogen by the World Health Organization. We hereby report the identification and the draft genome sequence of a carbapenem-resistant A. baumannii isolated from a patient with community-onset urinary tract infection, in a Chilean Patagonian city. METHODS: The whole genome was sequenced on an Illumina NextSeq platform and de novo assembled using Unicycler v.0.4. Resistome analysis and epidemiological investigation (based on MLST data and Pasteur scheme) were performed using bioinformatics tools available from the Center for Genomic Epidemiology. RESULTS: The genome size was calculated at 3890824 bp, with a GC content of 39.1%, comprising 3864 total genes, 30 tRNAs, 3 rRNAs, 4 ncRNAs, and 109 pseudogenes. Carbapenem-resistant A. baumannii Ab3_Ch strain belonged to the international sequence type ST15 (clonal complex, CC15), and harboured the ISAba-1-blaOXA-219 gene array, along to blaTEM-1B and blaADC-6 ß-lactamase genes, and aac(3)-IIa and aph(3')-VIa aminoglycoside resistance genes. Additionally, efflux pump encoding genes (abaF, abaQ, abeS, adeI, adeK, adeL, adeN, adeR, adeS, and amvA) were identified, and mutations in the quinolone resistance-determining region of gyrA (Ser81Leu) and parC (Ser84Leu) were considered responsible for fluoroquinolone resistance. CONCLUSION: This genome sequence data could be used for comparative genomic studies of critical priority A. baumannii strains, as well as to understand the specific features of hospital-associated A. baumannii lineages of international clonal complexes emerging in community settings.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infecciones Urinarias , Acinetobacter baumannii/genética , Carbapenémicos/farmacología , Chile , Genómica , Humanos , Tipificación de Secuencias Multilocus , Infecciones Urinarias/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...