Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38276899

RESUMEN

The correct interpretation of infrared (IR) observations of planetary atmospheres requires an accurate knowledge of temperature and partial and global pressures. Precise laboratory measurements of absorption intensities and line profiles, in the 200-350 K temperature range, are, therefore, critical. However, for gases only existing in complex chemical equilibria, such as nitrous or hypobromous acids, it is not possible to rely on absolute pressure measurements to measure absolute integrated optical absorption cross sections or IR line intensities. To overcome this difficulty, a novel dual-beam terahertz (THz)/mid-IR experimental setup has been developed, relying on the simultaneous use of two instruments. The setup involves a newly constructed temperature-controlled (200-350 K) cross-shaped absorption cell made of inert materials. The cell is traversed by the mid-IR beam from a high-resolution Fourier transform spectrometer using along a White-cell optical configuration providing absorption path lengths from 2.8 to 42 m and by a THz radiation beam (82.5 GHz to 1.1 THz), probing simultaneously the same gaseous sample. The THz channel records pure rotational lines of molecules for which the dipole moment was previously measured with high precision using Stark spectroscopy. This allows for a determination of the partial pressure in the gaseous mixture and enables absolute line intensities to be retrieved for the mid-IR range. This new instrument opens a new possibility for the retrieval of spectroscopic parameters for unstable molecules of atmospheric interest. The design and performance of the equipment are presented and illustrated by an example of simultaneous THz and mid-IR measurement on nitrous acid (HONO) equilibrium.

2.
Opt Express ; 30(5): 7372-7382, 2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35299501

RESUMEN

Synchrotron radiation (SR) has proven to be an invaluable contributor to the field of molecular spectroscopy, particularly in the terahertz region (1-10 THz) where its bright and broadband properties are currently unmatched by laboratory sources. However, measurements using SR are currently limited to a resolution of around 30 MHz, due to the limits of Fourier-transform infrared spectroscopy. To push the resolution limit further, we have developed a spectrometer based on heterodyne mixing of SR with a newly available THz molecular laser, which can operate at frequencies ranging from 1 to 5.5 THz. This spectrometer can record at a resolution of 80 kHz, with 5 GHz of bandwidth around each molecular laser frequency, making it the first SR-based instrument capable of sub-MHz, Doppler-limited spectroscopy across this wide range. This allows closely spaced spectral features, such as the effects of internal dynamics and fine angular momentum couplings, to be observed. Furthermore, mixing of the molecular laser with a THz comb is demonstrated, which will enable extremely precise determinations of molecular transition frequencies.

3.
J Infrared Millim Terahertz Waves ; 41(8): 1009-1021, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32837589

RESUMEN

In a chirped pulse experiment, the strength of the signal level is proportional to the amplitude of the electric field, which is weaker in the millimeter-wave or submillimeter-wave region than in the microwave region. Experiments in the millimeter region thus require an optimization of the coupling between the source and the molecular system and a method to estimate the amplitude of the electric field as seen by the molecular system. We have developed an analytical model capable of reproducing the coherent transient signals obtained with a millimeter-wave chirped pulse setup operated in a monochromatic pulse mode. The fit of the model against the experimental data allowed access to the amplitude of the electric field and, as a byproduct, to the molecular relaxation times T 1 and T 2.

4.
Opt Lett ; 44(20): 4985-4988, 2019 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-31613245

RESUMEN

A new spectrometer allowing both high resolution and broadband coverage in the terahertz (THz) domain is proposed. This instrument exploits the heterodyne technique between broadband synchrotron radiation and a quantum-cascade-laser-based molecular THz laser that acts as the local oscillator. Proof of principle for exploitation for spectroscopy is provided by the recording of molecular absorptions of hydrogen sulfide (H2S) and methanol (CH3OH) around 1.073 THz. Ultimately, the spectrometer will enable to cover the 1-4 THz region in 5 GHz windows at Doppler resolution.

5.
J Chem Phys ; 150(10): 104303, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30876373

RESUMEN

Because methoxyphenols (MP) are emitted in significant quantities during biomass fires and contribute to the secondary organic aerosols formation which impacts the climate, their gas phase monitoring in the atmosphere is crucial and requires accurate rovibrational cross sections determined with a good knowledge of their ground state (GS) and vibrationally excited state (ES) molecular parameters. Therefore, the rotational spectra of the two isomers, 2-MP (guaïacol) and 4-MP (mequinol), have been measured in absorption and in emission at room temperature using a frequency multiplication chain and a mm-wave Fourier transform chirped-pulse spectrometer, respectively. Guided by quantum chemistry calculations, the conformational landscape has been characterised and the observation of only one rotamer in the spectra of 2-MP and 4-MP has been explained. For 2-MP, the most stable conformation is justified by an intramolecular O-H⋯OCH3 hydrogen-bond which has been characterised by a topology analysis of the electron density. In a global fit including more than 30 000 line assignments, rotational and quartic centrifugal constants of the GS and the three lowest energy ES have been determined allowing to reproduce the millimeter-wave spectra at the experimental accuracy. The same work has been performed on the cis-rotamer of 4-MP highlighting some perturbations marring the fit quality for two vibrationally ES. Finally, the isomeric dependence of the negative inertial defect ΔI agrees with that of the lowest energy out of plane mode ν45, and the variation of ΔI with the degree of vibrational excitation allows a fine estimation of v45 = 1 vibrational wavenumber.

6.
J Chem Phys ; 144(8): 084305, 2016 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-26931700

RESUMEN

Despite its potential role as an atmospheric pollutant, thionyl chloride, SOCl2, remains poorly characterized in the gas phase. In this study, the pure rotational and ro-vibrational spectra of six isotopologues of this molecule, all detected in natural abundance, have been extensively studied from the cm-wave band to the far-infrared region by means of three complementary techniques: chirped-pulse Fourier transform microwave spectroscopy, sub-millimeter-wave spectroscopy using frequency multiplier chain, and synchrotron-based far-infrared spectroscopy. Owing to the complex line pattern which results from two nuclei with non-zero spins, new, high-level quantum-chemical calculations of the hyperfine structure played a crucial role in the spectroscopic analysis. From the combined experimental and theoretical work, an accurate semi-experimental equilibrium structure (r(e)(SE)) of SOCl2 has been derived. With the present data, spectroscopy-based methods can now be applied with confidence to detect and monitor this species, either by remote sensing or in situ.

7.
Nat Commun ; 6: 7733, 2015 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-26190043

RESUMEN

Frequency combs have enabled significant progress in frequency metrology and high-resolution spectroscopy extending the achievable resolution while increasing the signal-to-noise ratio. In its coherent mode, synchrotron radiation is accepted to provide an intense terahertz continuum covering a wide spectral range from about 0.1 to 1 THz. Using a dedicated heterodyne receiver, we reveal the purely discrete nature of this emission. A phase relationship between the light pulses leads to a powerful frequency comb spanning over one decade in frequency. The comb has a mode spacing of 846 kHz, a linewidth of about 200 Hz, a fractional precision of about 2 × 10(-10) and no frequency offset. The unprecedented potential of the comb for high-resolution spectroscopy is demonstrated by the accurate determination of pure rotation transitions of acetonitrile.

8.
J Chem Phys ; 142(10): 104310, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-25770543

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are highly relevant for astrophysics as possible, though controversial, carriers of the unidentified infrared emission bands that are observed in a number of different astronomical objects. In support of radio-astronomical observations, high resolution laboratory spectroscopy has already provided the rotational spectra in the vibrational ground state of several molecules of this type, although the rotational study of their dense infrared (IR) bands has only recently become possible using a limited number of experimental set-ups. To date, all of the rotationally resolved data have concerned unperturbed spectra. We presently report the results of a high resolution study of the three lowest vibrational states of quinoline C9H7N, an N-bearing naphthalene derivative. While the pure rotational ground state spectrum of quinoline is unperturbed, severe complications appear in the spectra of the ν45 and ν44 vibrational modes (located at about 168 cm(-1) and 178 cm(-1), respectively). In order to study these effects in detail, we employed three different and complementary experimental techniques: Fourier-transform microwave spectroscopy, millimeter-wave spectroscopy, and Fourier-transform far-infrared spectroscopy with a synchrotron radiation source. Due to the high density of states in the IR spectra of molecules as large as PAHs, perturbations in the rotational spectra of excited states should be ubiquitous. Our study identifies for the first time this effect and provides some insights into an appropriate treatment of such perturbations.

9.
J Phys Chem B ; 114(50): 16936-47, 2010 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-21114335

RESUMEN

The high brilliance of the AILES beamline at the SOLEIL synchrotron facility has been exploited for the study of the gas-phase vibrational spectra of weakly volatile organophosphorous compounds. The propagation of the synchrotron radiation in long path length gas cells allowed improvements in the sensitivity limits and spectral coverage compared with a previous study, performed by our group with conventional thermal sources. A ppm level detection in the entire IR domain up to terahertz (THz) frequencies has been realized for dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), triethyl phosphate (TEP), and diethyl (2-methylallyl)phosphonate (DEMaP). In the present study, the assignment of the gas-phase vibrational and the conformational analysis of the two most stable conformers of DMMP and TMP have been extended to the torsional THz spectra in the 20-120 cm(-1) range. The improvement of the S/N ratio below 600 cm(-1) has permitted for the first time a gas-phase conformational analysis of the two weakly volatile and highly flexible TEP and DEMaP compounds. The experimental far-infrared (FIR)/THz spectra have been studied taking into account four low-energy conformers determined by means of high level of theory quantum chemistry calculations. Finally, due to its particularly low vapor pressure, the detection of gas-phase tributyl phosphate (TBP) in the FIR domain was unsuccessful. Nevertheless, the mid-IR/near-IR spectra of TBP recorded in a multipass cell heated to 355 K have been assigned with the harmonic vibrational predictions of the most stable conformer.

10.
J Phys Chem B ; 112(39): 12516-25, 2008 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-18781711

RESUMEN

Gas phase vibrational spectra of dimethyl methylphosphonate (DMMP), trimethyl phosphate (TMP), and triethyl phosphate (TEP) have been measured using FTIR spectroscopy. For DMMP, TMP, and TEP, most of the infrared active vibrational modes have been observed in the 50-5000 cm (-1) spectral range, allowing an unambiguous discrimination between the three molecules. The vibrational analysis of the spectra was performed by comparing with MP2 and B3LYP harmonic and anharmonic force field ab initio calculations. The extension to anharmonic calculations provides the best agreement for the mid-infrared and the near-infrared spectra, but they do not improve the harmonic frequency predictions in the far-infrared domain. This part of the vibrational spectra associated with collective and nonlocalized vibrational modes presents the largest frequency differences between the two lowest energy conformers of DMMP and TMP. These two conformers were taken into account in the vibrational assignment of the spectra. Their experimental evidence was obtained by deconvoluting vibrational bands in the mid-infrared and in the far-infrared regions, respectively. For TEP, the conformational landscape appears very complicated at ambient temperature, and a further analysis at low temperature is required to explain the vibrational features of each conformer.


Asunto(s)
Gases/química , Compuestos Organofosforados/química , Teoría Cuántica , Vibración , Conformación Molecular , Organofosfatos/química , Presión , Espectroscopía Infrarroja por Transformada de Fourier , Temperatura , Volatilización
11.
Opt Express ; 14(5): 1856-61, 2006 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-19503515

RESUMEN

We report the first demonstration of a terahertz photomixer made of ion-irradiated In(0.53)Ga(0.47)As lattice-matched to InP and fiber-optic coupled with the drive lasers. A continuous-wave radiation is generated at frequencies up to 0.8 THz by photomixing two continuous-wave laser diodes around 1.55 microm. The measured 3dB-down bandwidth of 300 GHz yields a carrier lifetime of 0.53 ps, in agreement with the value of 0.41 ps measured in pump probe experiments. The detected signal is at the most 15 dB lower than the one obtained from similar photomixers fabricated from low-temperature-grown GaAs.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(4 Pt 2): 046609, 2001 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11308970

RESUMEN

We analyze theoretically and study experimentally the mechanisms of enhancement of the sum frequency and second harmonic generation in a finite one-dimensional photonic band gap structure with second order nonlinearity under Bragg diffraction conditions. It is shown that, near the photonic band gap edge, the efficiency of conversion in sum frequency and second harmonic generation processes can be significantly enhanced if two conditions are fulfilled simultaneously: grating assisted phase matching, or quasiphase matching, and an increase of the electromagnetic field density at the fundamental frequencies near the photonic band edges. The role of each mechanism is discussed.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 63(1 Pt 2): 016602, 2001 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-11304373

RESUMEN

We demonstrate experimentally the effect of compression of femtosecond laser pulses in thin (a few micrometers) one-dimensional photonic crystal. We show that the compression effect is reasonably described by the linear dispersion properties of the photonic crystal itself and the quadratic dispersion approximation cannot be efficiently used for the description of interaction of the femtosecond laser pulses with the thin photonic crystal. For given parameters of the femtosecond pulse it leads to the existence of the optimal dimension of the photonic crystal from the point of view of the compression efficiency. Due to the wide spectral width of the femtosecond laser pulses the high-order dispersion effects play an important role in pulse propagation in photonic crystals and as a result the pulse compression occurs for both positive and negative signs of chirp of the incoming femtosecond pulses.

14.
Appl Phys B ; 72(7): 873-6, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11757570

RESUMEN

A tunable mid-infrared continuous-wave (cw) spectroscopic source in the 3.4-4.5 micrometers region is reported, based on difference frequency generation (DFG) in a quasi-phase-matched periodically poled RbTiOAsO4 (PPRTA) crystal. DFG power levels of 10 microW were generated at approximately 4 micrometers in a 20-mm long PPRTA crystal by mixing two cw single-frequency Ti:Al2O3 lasers operating near 713 nm and 871 nm, respectively, using a laser pump power of 300 mW. A quasi-phase-matched infrared wavelength-tuning bandwidth (FWHM) of ~ 12 cm-1 and a temperature tuning rate of 1.02 cm-1/degree C were achieved. Experimental details regarding the feasibility of trace gas detection based on absorption spectroscopy of CO2 in ambient air using this DFG radiation source are also described.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Gases/análisis , Rayos Láser , Óxido de Aluminio , Arseniatos , Dióxido de Carbono/análisis , Cristalización , Distribución Normal , Óptica y Fotónica , Rubidio , Espectrofotometría Infrarroja/instrumentación , Titanio
15.
Opt Lett ; 24(5): 351-3, 1999 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-18071503

RESUMEN

A gas filter correlation (GFC) instrument for air monitoring at submillimeter wavelengths has been developed. We used a high-power terahertz radiation source in combination with a specific gas filter cell to obtain a highly selective instrument to differentiate species present in an unknown mixture. This approach provides a new method for survey measurements in the spectrum from 100 to 1000 GHz, in which many molecular rotational lines appear. Basic operational considerations and preliminary experiments with hydrogen sulfide are described.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...