Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Oncologist ; 2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38761384

RESUMEN

BACKGROUND: Only a fraction of patients with metastatic melanoma derive durable benefit from approved treatments. The clinical impact of personalized medicine strategies for melanoma, apart from BRAF, NRAS, or CKIT targeting, has rarely been reported. MATERIALS AND METHODS: By means of the Group of Cutaneous Oncology of the French Society of Dermatology, we retrospectively included all patients with advanced melanoma aged 18 years and older for whom molecular testing identified one or more actionable molecular alterations and who accordingly received molecularly matched therapy. We excluded patients with only BRAF, NRAS, or CKIT alterations and patients who received molecularly matched therapy for less than 15 days. RESULTS: We included 26 patients with a median follow-up of 8 months (1-54), a median age of 63 years (24-89), and a sex ratio of 2.7. These patients had been heavily pretreated, and 64% had elevated LDH levels. The disease control rate was 38%, with 4 cases of partial response (overall response rate: 15%) and 6 of stable disease for at least 6 months. The median duration of treatment was 3.1 months (0.9-13.5). Among patients with disease control, the median duration of control was 6.6 months (2.6-13.5) and 3 cases were ongoing at the end of the study. Patients with controlled disease had GNA11, MAP2K1, FYCO1-RAF1, HRAS, ATM, CCND1, MDM2/CDK4, and CDKN2A/NRAS alterations. CONCLUSIONS: High-throughput sequencing followed by matched targeted therapy is a promising approach for patients with advanced melanoma refractory to approved treatments.

3.
Immunology ; 171(2): 286-311, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37991344

RESUMEN

Dendritic cell (DC) subsets play a crucial role in shaping anti-tumour immunity. Cancer escapes from the control immune system by hijacking DC functions. Yet, bases for such subversion are only partially understood. Tumour cells display aberrant glycan motifs on surface glycoproteins and glycolipids. Such carbohydrate patterns can be sensed by DCs through C-type lectin receptors (CLRs) that are critical to shape and orientate immune responses. We recently demonstrated that melanoma tumour cells harboured an aberrant 'glyco-code,' and that circulating and tumour-infiltrating DCs from melanoma patients displayed major perturbations in their CLR profiles. To decipher whether melanoma, through aberrant glycan patterns, may exploit CLR pathways to mislead DCs and evade immune control, we explored the impact of glycan motifs aberrantly found in melanoma (neoglycoproteins [NeoGP] functionalised with Gal, Man, GalNAc, s-Tn, fucose [Fuc] and GlcNAc residues) on features of human DC subsets (cDC2s, cDC1s and pDCs). We examined the ability of glycans to bind to purified DCs, and assessed their impact on DC basal properties and functional features using flow cytometry, confocal microscopy and multiplex secreted protein analysis. DC subsets differentially bound and internalised NeoGP depending on the nature of the glycan. Strikingly, Fuc directly remodelled the expression of activation markers and immune checkpoints, as well as the cytokine/chemokine secretion profile of DC subsets. NeoGP interfered with Toll like receptor (TLR)-signalling and pre-conditioned DCs to exhibit an altered response to subsequent TLR stimulation, dampening antitumor mediators while triggering pro-tumoral factors. We further demonstrated that DC subsets can bind NeoGP through CLRs, and identified GalNAc/MGL and s-Tn/ C-type lectin-like receptor 2 (CLEC2) as potential candidates. Moreover, DC dysfunction induced by tumour-associated carbohydrate molecules may be reversed by interfering with the glycan/CLR axis. These findings revealed the glycan/CLR axis as a promising checkpoint to exploit in order to reshape potent antitumor immunity while impeding immunosuppressive pathways triggered by aberrant tumour glycosylation patterns. This may rescue DCs from tumour hijacking and improve clinical success in cancer patients.


Asunto(s)
Lectinas Tipo C , Melanoma , Masculino , Humanos , Células Dendríticas , Glicoproteínas , Receptores Toll-Like/metabolismo , Polisacáridos/metabolismo
5.
Front Immunol ; 14: 1120434, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36891308

RESUMEN

Subversion of immunity is a hallmark of cancer development. Dendritic cells (DCs) are strategic immune cells triggering anti-tumor immune responses, but tumor cells exploit their versatility to subvert their functions. Tumor cells harbor unusual glycosylation patterns, which can be sensed through glycan-binding receptors (lectins) expressed by immune cells that are crucial for DCs to shape and orientate antitumor immunity. Yet, the global tumor glyco-code and its impact on immunity has not been explored in melanoma. To decrypt the potential link between aberrant glycosylation patterns and immune evasion in melanoma, we investigated the melanoma tumor glyco-code through the GLYcoPROFILE™ methodology (lectin arrays), and depicted its impact on patients' clinical outcome and DC subsets' functionality. Specific glycan patterns correlated with clinical outcome of melanoma patients, GlcNAc, NeuAc, TF-Ag and Fuc motifs being associated with poor outcome, whereas Man and Glc residues elicited better survival. Strikingly, tumor cells differentially impacting cytokine production by DCs harbored distinct glyco-profiles. GlcNAc exhibited a negative influence on cDC2s, whereas Fuc and Gal displayed inhibitory impacts on cDC1s and pDCs. We further identified potential booster glycans for cDC1s and pDCs. Targeting specific glycans on melanoma tumor cells restored DCs' functionality. The tumor glyco-code was also linked to the nature of the immune infiltrate. This study unveils the impact of melanoma glycan patterns on immunity, and paves the way for innovative therapeutic options. Glycans/lectins interactions arise as promising immune checkpoints to rescue DCs from tumor' hijacking to reshape antitumor immunity and inhibit immunosuppressive circuits triggered by aberrant tumor glycosylation.


Asunto(s)
Células Dendríticas , Melanoma , Masculino , Humanos , Melanoma/patología , Lectinas , Glicosilación , Polisacáridos
6.
Front Immunol ; 13: 1040600, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36353633

RESUMEN

Subversion of immunity by tumors is a crucial step for their development. Dendritic cells (DCs) are strategic immune cells that orchestrate anti-tumor immune responses but display altered functions in cancer. The bases for such DCs' hijacking are not fully understood. Tumor cells harbor unusual glycosylation patterns of surface glycoproteins and glycolipids. DCs express glycan-binding receptors, named C-type lectin receptors (CLR), allowing them to sense changes in glycan signature of their environment, and subsequently trigger a response. Recognition of tumor glycans by CLRs is crucial for DCs to shape antitumor immunity, and decisive in the orientation of the response. Yet the status of the CLR machinery on DCs in cancer, especially melanoma, remained largely unknown. We explored CLR expression patterns on circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs of melanoma patients, assessed their clinical relevance, and further depicted the correlations between CLR expression profiles and DCs' features. For the first time, we highlighted that the CLR repertoire of circulating and tumor-infiltrating cDC1s, cDC2s, and pDCs was strongly perturbed in melanoma patients, with modulation of DCIR, CLEC-12α and NKp44 on circulating DCs, and perturbation of Dectin-1, CD206, DEC205, DC-SIGN and CLEC-9α on tumor-infiltrating DCs. Furthermore, melanoma tumor cells directly altered CLR expression profiles of healthy DC subsets, and this was associated with specific glycan patterns (Man, Fuc, GlcNAc) that may interact with DCs through CLR molecules. Notably, specific CLR expression profiles on DC subsets correlated with unique DCs' activation status and functionality and were associated with clinical outcome of melanoma patients. Higher proportions of DCIR-, DEC205-, CLEC-12α-expressing cDCs were linked with a better survival, whereas elevated proportions of CD206-, Dectin1-expressing cDCs and NKp44-expressing pDCs were associated with a poor outcome. Thus, melanoma tumor may shape DCs' features by exploiting the plasticity of the CLR machinery. Our study revealed that melanoma manipulates CLR pathways to hijack DC subsets and escape from immune control. It further paved the way to exploit glycan-lectin interactions for the design of innovative therapeutic strategies, which exploit DCs' potentialities while avoiding hijacking by tumor, to properly reshape anti-tumor immunity by manipulating the CLR machinery.


Asunto(s)
Células Dendríticas , Melanoma , Masculino , Humanos , Lectinas Tipo C/metabolismo , Glicoproteínas de Membrana/metabolismo , Polisacáridos , Melanoma/metabolismo
7.
Therapie ; 77(6): 649-656, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35710462

RESUMEN

BACKGROUND: Janus kinase (JAK) inhibitors are targeted therapies with a potential imunomodulatory and anti-inflammatory effect, indicated in various dysimmune pathologies. Skin cancers have been reported to occur in patients treated with JAK inhibitors. However, drug safety in clinical trials did not confirm that risk, but these studies are performed on controlled population and in a limited time of follow up. OBJECTIVES: The aim of this study is to evaluate in real life condition if a disproportionality signal exists between JAK inhibitors treatment and skin cancers. METHODS: We performed cases/non cases analysis in VigiBase® (the World Health Organization international database of suspected adverse drug reaction) using information component to search for a disproportionality signal of skin cancers from JAK inhibitor. We extracted all reports of skin cancers from the French Pharmacovigilance database occurring since 1978 up to 31st December 2019 for the three existing JAK inhibitors on market: ruxolitinib, tofacitinib and baricitinib. Only melanoma, squamous cell carcinoma and Merkel cell carcinoma were analyzed, according to the pathophysiology of these cancers and their link with immunosuppression. RESULTS: A disproportionality signal was found positive for squamous cell carcinoma with ruxolitinib (IC025=3.92) and tofacitinib (IC025=0.82), for melanoma with ruxolitinib (IC025=0.81) and tofacitinib (IC025=0.74), and Merkel cell carcinoma with ruxolitinib (IC025=4) and tofactinib (IC025=1.01) and only for Merkel cell carcinoma with baricitinib (IC025=0.53). Moreover, Merkel cell carcinoma, a very rare skin cancer more prevalent in immunodepressed patients was particularly represented in our sample and was associated with a significant disproportionality signal with all the studied JAK inhibitors. CONCLUSION: Our study shows that JAK inhibitors could be associated with an extra risk to develop skin cancers. Could an anti-viral or immunovigilance disruption mechanism brought by JAK inhibitors explain an over-risk with Merkel cell carcinoma, which were notably represented in our sample? Considering pharmacovigilance method limitations, further pharmacoepidemiological studies are required to assess a causal link between JAK inhibitors treatment and skin cancers development.


Asunto(s)
Carcinoma de Células de Merkel , Carcinoma de Células Escamosas , Inhibidores de las Cinasas Janus , Melanoma , Neoplasias Cutáneas , Humanos , Inhibidores de las Cinasas Janus/efectos adversos , Carcinoma de Células de Merkel/tratamiento farmacológico , Farmacovigilancia , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/epidemiología , Organización Mundial de la Salud , Melanoma/tratamiento farmacológico
8.
Clin Transl Immunology ; 11(5): e1382, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35517992

RESUMEN

Objectives: Plasmacytoid DCs (pDCs) play a critical yet enigmatic role in antitumor immunity through their pleiotropic immunomodulatory functions. Despite proof of pDC diversity in several physiological or pathological contexts, pDCs have been studied as a whole population so far in cancer. The assessment of individual pDC subsets is needed to fully grasp their involvement in cancer immunity, especially in melanoma where pDC subsets are largely unknown and remain to be uncovered. Methods: We explored for the first time the features of diverse circulating and tumor-infiltrating pDC subsets in melanoma patients using multi-parametric flow cytometry, and assessed their clinical relevance. Based on CD80, PDL1, CD2, LAG3 and Axl markers, we provided an integrated overview of the frequency, basal activation status and functional features of pDC subsets in melanoma patients together with their relationship to clinical outcome. Results: Strikingly, we demonstrated that P3-pDCs (CD80+PDL1-) accumulated within the tumor of melanoma patients and negatively correlated with clinical outcomes. The basal activation status, diversification towards P1-/P2-/P3-pDCs and functionality of several pDC subsets upon TLR7/TLR9 triggering were perturbed in melanoma patients, and were differentially linked to clinical outcome. Conclusion: Our study shed light for the first time on the phenotypic and functional heterogeneity of pDCs in the blood and tumor of melanoma patients and their potential involvement in shaping clinical outcomes. Such novelty brightens our understanding of pDC complexity, and prompts the further deciphering of pDCs' features to better apprehend and exploit these potent immune players. It highlights the importance of considering pDC diversity when developing pDC-based therapeutic strategies to ensure optimal clinical success.

9.
Clin Transl Immunology ; 10(11): e1329, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34786191

RESUMEN

OBJECTIVES: pDCs and γδ T cells emerge as potent immune players participating in the pathophysiology of cancers, yet still remaining enigmatic while harbouring a promising potential for clinical translations. Despite strategic and closed missions, crosstalk between pDCs and γδ T cells has not been deciphered yet in cancers, especially in melanoma where the long-term control of the tumor still remains a challenge. METHODS: This prompted us to explore the interplay between pDCs and γδ T cells in the context of melanoma, investigating the reciprocal features of pDCs or γδ T cells, the underlying molecular mechanisms and its impact on clinical outcomes. RESULTS: TLRL-activated pDCs from the blood and tumor infiltrate of melanoma patients displayed an impaired ability to activate, to modulate immune checkpoints and trigger the functionality of γδ T cells. Conversely, γδ T cells from the blood or tumor infiltrate of melanoma patients activated by PAg were defective in triggering pDCs' activation and modulation of immune checkpoints, and failed to elicit the functionality of pDCs. Reversion of the dysfunctional cross-talks could be achieved by specific cytokine administration and immune checkpoint targeting. Strikingly, we revealed an increased expression of BTN3A on circulating and tumor-infiltrating pDCs and γδ T cells from melanoma patients, but stressed out the potential impairment of this molecule. CONCLUSION: Our study uncovered that melanoma hijacked the bidirectional interplay between pDCs and γδ T cells to escape from immune control, and revealed BTN3A dysfunction. Such understanding will help harness and synergise the power of these potent immune cells to design new therapeutic approaches exploiting their antitumor potential while counteracting their skewing by tumors to improve patient outcomes.

10.
Clin Transl Immunology ; 9(11): e1190, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33282290

RESUMEN

OBJECTIVES: Dendritic cells play a pivotal but still enigmatic role in the control of tumor development. Composed of specialised subsets (cDC1s, cDC2s, pDCs), DCs are critical in triggering and shaping antitumor immune responses. Yet, tumors exploit plasticity of DCs to subvert their functions and escape from immune control. This challenging controversy prompted us to explore the pathophysiological role of cDCs and pDCs in melanoma, where their precise and coordinated involvement remains to be deciphered. METHODS: We investigated in melanoma patients the phenotypic and functional features of circulating and tumor-infiltrating BDCA1+ cDC2s, BDCA2+ pDCs and BDCA3+ cDC1s and assessed their clinical impact. RESULTS: Principal component analyses (PCA) based on phenotypic or functional parameters of DC subsets revealed intra-group clustering, highlighting specific features of DCs in blood and tumor infiltrate of patients compared to healthy donors. DC subsets exhibited perturbed frequencies in the circulation and actively infiltrated the tumor site, while harbouring a higher activation status. Whereas cDC2s and pDCs displayed an altered functionality in response to TLR triggering, circulating and tumor-infiltrating cDC1s preserved potent competences associated with improved prognosis. Notably, the proportion of circulating cDC1s predicted the clinical outcome of melanoma patients. CONCLUSION: Such understanding uncovers critical and distinct impact of each DC subset on clinical outcomes and unveils fine-tuning of interconnections between DCs in melanoma. Elucidating the mechanisms of DC subversion by tumors could help designing new therapeutic strategies exploiting the potentialities of these powerful immune players and their cross-talks, while counteracting their skewing by tumors, to achieve immune control and clinical success.

11.
Pigment Cell Melanoma Res ; 33(4): 612-624, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31971658

RESUMEN

There is increasing evidence that T-cell receptor (TCR) repertoire diversity can be a predictive biomarker of immune responses in cancer patients. However, the characteristics of the T-cell repertoire together with its prognostic significance in melanoma patients and impact on disease progression remain unknown. We investigated the combinatorial TCR repertoire diversity by semi-quantitative multi-N-plex PCR in peripheral blood samples from 44 melanoma patients together with seven matched metastatic lymph nodes and explored its potential predictive value on clinical prognosis. The diversity was quantified by calculating both richness (number of different specificities) and evenness (relative abundance of the different specificities). Our results revealed that a higher TCR repertoire diversity in blood of patients was associated with a longer PFS, while divpenia (low repertoire diversity) was linked with poor prognosis. The diversity was significantly higher in patients undergoing late relapse and long survival compared to patients who progressed rapidly. Interestingly, the TCR repertoire diversity in tumor may have a potential prognostic value. Thus, our study highlights that the TCR repertoire diversity is a prognostic indicator of clinical outcome in patients with melanoma.


Asunto(s)
Biomarcadores de Tumor/genética , Variación Genética , Melanoma/genética , Melanoma/inmunología , Receptores de Antígenos de Linfocitos T/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Supervivencia sin Enfermedad , Femenino , Humanos , Ganglios Linfáticos/patología , Metástasis Linfática/patología , Recuento de Linfocitos , Masculino , Melanoma/sangre , Persona de Mediana Edad , Pronóstico , Neoplasias Cutáneas/sangre , Resultado del Tratamiento
12.
Oncoimmunology ; 8(8): 1601483, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31413911

RESUMEN

γδT cells hold a pivotal role in tumor immunosurveillance through their prompt activation and cytokine secretion, their ability to kill tumor cells in an Human Leukocyte Antigen (HLA)-unrestricted manner, and their combination of features of both innate and adaptive immunity. These unique properties and functional plasticity render them very attractive both as targets and vectors for cancer immunotherapy. Yet, these potent and fascinating antitumor effectors have not been extensively explored in melanoma. We provided here a detailed investigation of the phenotypic and functional properties of circulating and tumor-infiltrating γδT cells in melanoma patients, and their impact on clinical evolution. High proportions of circulating- and tumor-infiltrating γδT and δ2+ subset were associated with better clinical outcome. We reported however that circulating and tumor-infiltrating γδT cells from melanoma patients displayed an altered expression of NCR, KIR, and immune checkpoints, and identified NKp44, PD1, 41BB/41BBL, TIM3, and LAG3 as crucial checkpoints allowing immune escape and tumor progression. Notably, melanoma drastically impaired the ability of γδT cells to exhibit activation molecules, secrete cytokines, and display cytotoxicity toward melanoma in response to stimulation with phosphoantigens. It drove them toward regulatory and Th17 profiles associated with poor clinical outcomes. Our study highlights that melanoma hijacked γδT cells to escape from immune control, and revealed that circulating and tumor-infiltrating γδT cell features are promising potential biomarkers of clinical evolution. Such understanding of the physiopathology of γδT cells may help designing new therapeutic approaches exploiting the antitumor potential of γδT cells while counteracting their skewing by tumors to improve patient outcomes.

13.
Pigment Cell Melanoma Res ; 31(1): 82-94, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28741900

RESUMEN

The advent of immune checkpoint blockers and targeted therapies has changed the outcome of melanoma. However, many patients experience relapses, emphasizing the need for predictive and prognostic biomarkers. We developed a strategy based on plasmacytoid dendritic cells (pDCs) loaded with melanoma tumor antigens that allows eliciting highly efficient antitumor T-cell responses. We used it to investigate antitumor T-cell functionality in peripheral blood mononuclear cells and tumor-infiltrating lymphocytes from melanoma patients. The pDCs elicited tumor-specific T cells in different proportions and displaying diverse functional features, dependent upon the stage of the disease, but independent of the histological parameters at diagnosis. Strikingly, the avidity of the MelA-specific T cells triggered by the pDCs was found to predict patient relapse time and overall survival. Our findings highlighted unexplored aspects of antitumor T-cell responsiveness in melanoma, and revealed for the first time the structural avidity of tumor-specific T cells as a crucial feature for predicting clinical evolution.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Antígeno HLA-A2/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/patología , Recurrencia Local de Neoplasia/patología , Neoplasias Cutáneas/patología , Adulto , Anciano , Anciano de 80 o más Años , Linfocitos T CD8-positivos/metabolismo , Células Dendríticas/metabolismo , Femenino , Humanos , Linfocitos Infiltrantes de Tumor/metabolismo , Masculino , Melanoma/inmunología , Melanoma/metabolismo , Melanoma/terapia , Persona de Mediana Edad , Recurrencia Local de Neoplasia/inmunología , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/terapia , Estadificación de Neoplasias , Pronóstico , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/terapia , Tasa de Supervivencia
14.
Biomed Res Int ; 2017: 5986129, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484715

RESUMEN

Melanoma is a cutaneous cancer with an increasing worldwide prevalence and high mortality due to unresectable or metastatic stages. Mutations in BRAF, NRAS, or KIT are present in more than 60% of melanoma cases, but a useful blood-based biomarker for the clinical monitoring of melanoma patients is still lacking. Thus, the analysis of circulating tumor cells (CTCs) and/or cell-free circulating tumor DNA (ctDNA) analysis from blood (liquid biopsies) appears to be a promising noninvasive, repeatable, and systemic sampling tool for detecting and monitoring melanoma. Here, we review the molecular biology-based strategies used for ctDNA quantification in melanoma patients, as well as their main clinical applications. Droplet digital PCR (ddPCR) and next generation sequencing (NGS) technologies appear to be two versatile and complementary strategies to study rare variant mutations for the detection and monitoring of melanoma progression. Among the different clinical uses of ctDNA, we highlight the assessment of molecular heterogeneity and the identification of genetic determinants for targeted therapy as well as the analysis of acquired resistance. Importantly, ctDNA quantification might also be a novel biomarker with a prognostic value for melanoma patients.


Asunto(s)
ADN de Neoplasias/sangre , Melanoma/sangre , Reacción en Cadena de la Polimerasa/métodos , ADN de Neoplasias/genética , Humanos , Melanoma/genética , Melanoma/patología , Monitoreo Fisiológico/métodos , Metástasis de la Neoplasia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
15.
Toxicol Lett ; 241: 71-81, 2016 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-26551547

RESUMEN

Sulfur mustard (SM) is a chemical warfare agent that, upon topical application, damages skin and reaches internal organs through diffusion in blood. Two major toxic consequences of SM exposure are inflammation, associated with oxidative stress, and the formation of alkylated DNA bases. In the present study, we investigated the impact of exposure to SM on DNA repair, using two different functional DNA repair assays which provide information on several Base Excision Repair (BER) and Excision/Synthesis Repair (ESR) activities. BER activities were reduced in all organs as early as 4h after exposure, with the exception of the defense systems against 8-oxo-guanine and hypoxanthine which were stimulated. Interestingly, the resulting BER intermediates could activate inflammation signals, aggravating the inflammation triggered by SM exposure and leading to increased oxidative stress. ESR activities were found to be mostly inhibited in skin, brain and kidneys. In contrast, in the lung there was a general increase in ESR activities. In summary, exposure to SM leads to a significant decrease in DNA repair in most organs, concomitant with the formation of DNA damage. These synergistic genotoxic effects are likely to participate in the high toxicity of this alkylating agent. Lungs, possibly better equipped with repair enzymes to handle exogenous exposure, are the exception.


Asunto(s)
Alquilantes/toxicidad , Sustancias para la Guerra Química/toxicidad , Reparación del ADN/efectos de los fármacos , Erupciones por Medicamentos/patología , Gas Mostaza/administración & dosificación , Gas Mostaza/toxicidad , Administración Tópica , Animales , Biomarcadores , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Guanina/análogos & derivados , Guanina/farmacología , Hipoxantina/farmacología , Masculino , Ratones , Mutágenos/toxicidad , Estrés Oxidativo/efectos de los fármacos
16.
Toxicol Lett ; 233(1): 1-7, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25562541

RESUMEN

Sulfur mustard (SM) is an old chemical warfare but it remains a threat to both militaries and civilians. SM mainly targets skin, eyes and lungs and diffuses to internal organs. At the molecular level, SM is able to damage DNA through the formation of monoadducts and biadduct. Glutathione (GSH) is another critical target of SM in cells since it is part of the detoxification mechanism against alkylating agents. In the present work, we investigated whether SM could form covalent bonds simultaneously with a DNA base and the sulfhydryl group of GSH. The expected guanine adduct, S-[2-(N7-guanyl)-ethylthioethyl]-glutathione (N7Gua-ETE-GSH), was synthesized and detected in several tissues of SKH-1 mice exposed to 60mg/kg of SM in the dorsal-lumbar region. N7Gua-ETE-GSH was detected in all organs studied, except in the liver. The tissue exhibiting the highest levels of N7Gua-ETE-GSH was skin, followed by brain, lungs, kidneys and spleen. N7Gua-ETE-GSH was detected in skin, brain and lungs as long as two weeks after exposure. The persistence was less in other organs. The observation of the formation of N7Gua-ETE-GSH in vivo confirms the variety of damages induced by SM in DNA. It also provides another example of the formation of DNA adducts involving glutathione following in vivo exposure to bifunctional alkylating compounds.


Asunto(s)
Aductos de ADN/química , Glutatión/química , Guanina/química , Gas Mostaza/toxicidad , Piel/efectos de los fármacos , Alquilantes/toxicidad , Animales , Riñón/efectos de los fármacos , Hígado/efectos de los fármacos , Pulmón/efectos de los fármacos , Masculino , Ratones , Bazo/efectos de los fármacos
17.
Toxicol Lett ; 232(1): 68-78, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25275893

RESUMEN

Sulfur mustard (SM) is a strong bifunctional alkylating agent that produces severe tissue injuries characterized by erythema, edema, subepidermal blisters and a delayed inflammatory response after cutaneous exposure. However, despite its long history, SM remains a threat because of the lack of effective medical countermeasures as the molecular mechanisms of these events remain unclear. This limited number of therapeutic options results in part of an absence of appropriate animal models. We propose here to use SKH-1 hairless mouse as the appropriate model for the design of therapeutic strategies against SM-induced skin toxicity. In the present study particular emphasis was placed on histopathological changes associated with inflammatory responses after topical exposure of dorsal skin to three different doses of SM (0.6, 6 and 60mg/kg) corresponding to a superficial, a second-degree and a third-degree burn. Firstly, clinical evaluation of SM-induced skin lesions using non invasive bioengineering methods showed that erythema and impairment of skin barrier increased in a dose-dependent manner. Histological evaluation of skin sections exposed to SM revealed that the time to onset and the severity of symptoms including disorganization of epidermal basal cells, number of pyknotic nuclei, activation of mast cells and neutrophils dermal invasion were dose-dependent. These histopathological changes were associated with a dose- and time-dependent increase in expression of specific mRNA for inflammatory mediators such as interleukins (IL1ß and IL6), tumor necrosis factor (TNF)-α, cycloxygenase-2 (COX-2), macrophage inflammatory proteins (MIP-1α, MIP-2 and MIP-1αR) and keratinocyte chemoattractant (KC also called CXCL1) as well as adhesion molecules (L-selectin and vascular cell adhesion molecule (VCAM)) and growth factor (granulocyte colony-stimulating factor (Csf3)). A dose-dependent increase was also noted after SM exposure for mRNA of matrix metalloproteinases (MMP9) and laminin-γ2 which are associated with SM-induced blisters formation. Taken together, our results show that SM-induced skin histopathological changes related to inflammation is similar in SKH-1 hairless mice and humans. SKH-1 mouse is thus a reliable animal model for investigating the SM-induced skin toxicity and to develop efficient treatment against SM-induced inflammatory skin lesions.


Asunto(s)
Quemaduras Químicas/etiología , Sustancias para la Guerra Química , Dermatitis por Contacto/etiología , Mediadores de Inflamación/metabolismo , Gas Mostaza , Piel/metabolismo , Animales , Biomarcadores/metabolismo , Quemaduras Químicas/genética , Quemaduras Químicas/metabolismo , Quemaduras Químicas/patología , Degranulación de la Célula , Dermatitis por Contacto/genética , Dermatitis por Contacto/metabolismo , Dermatitis por Contacto/patología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica , Humanos , Laminina/genética , Laminina/metabolismo , Masculino , Mastocitos/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Pelados , Neutrófilos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Piel/patología , Factores de Tiempo
18.
Toxicol Appl Pharmacol ; 278(1): 39-44, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24732442

RESUMEN

Sulphur mustard (SM) is a chemical warfare agent that attacks mainly skin, eye and lungs. Due to its lipophilic properties, SM is also able to diffuse through the skin and reach internal organs. DNA represents one of the most critical molecular targets of this powerful alkylating agent which modifies DNA structure by forming monoadducts and biadducts. These DNA lesions are involved in the acute toxicity of SM as well as its long-term carcinogenicity. In the present work we studied the formation and persistence of guanine and adenine monoadducts and guanine biadducts in the DNA of brain, lungs, kidneys, spleen, and liver of SKH-1 mice cutaneously exposed to 2, 6 and 60mg/kg of SM. SM-DNA adducts were detected in all studied organs, except in liver at the two lowest doses. Brain and lungs were the organs with the highest level of SM-DNA adducts, followed by kidney, spleen and liver. Monitoring the level of adducts for three weeks after cutaneous exposure showed that the lifetime of adducts were not the same in all organs, lungs being the organ with the longest persistence. Diffusion from skin to internal organs was much more efficient at the highest compared to the lowest dose investigated as the result of the loss of the skin barrier function. These data provide novel information on the distribution of SM in tissues following cutaneous exposures and indicate that brain is an important target.


Asunto(s)
Encéfalo/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Daño del ADN , Pulmón/efectos de los fármacos , Gas Mostaza/toxicidad , Absorción Cutánea , Administración Cutánea , Animales , Carga Corporal (Radioterapia) , Encéfalo/metabolismo , Encéfalo/patología , Sustancias para la Guerra Química/metabolismo , Cromatografía Líquida de Alta Presión , Aductos de ADN/metabolismo , Difusión , Relación Dosis-Respuesta a Droga , Riñón/efectos de los fármacos , Riñón/metabolismo , Riñón/patología , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , Ratones , Ratones Pelados , Gas Mostaza/administración & dosificación , Gas Mostaza/metabolismo , Bazo/efectos de los fármacos , Bazo/metabolismo , Bazo/patología , Espectrometría de Masas en Tándem , Factores de Tiempo , Distribución Tisular
19.
Wound Repair Regen ; 22(2): 272-80, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24635178

RESUMEN

Data on the toxicity of lewisite (L), a vesicant chemical warfare agent, are scarce and conflicting, and the use of the specific antidote is not without drawbacks. This study was designed to evaluate if the SKH-1 hairless mouse model was suitable to study the L-induced skin injuries. We studied the progression of lesions following exposure to L vapors for 21 days using paraclinical parameters (color, transepidermal water loss (TEWL), and biomechanical measurements), histological assessments, and biochemical indexes of inflammation. Some data were also obtained over 27 weeks. The development of lesions was similar to that reported in other models. The TEWL parameter appeared to be the most appropriate index to follow their progression. Histological analysis showed inflammatory cell infiltration and microvesications at day 1 and a complete wound closure by day 21. Biochemical studies indicated a deregulation of the levels of several cytokines and receptors involved in inflammation. An increase in the quantity of pro-matrix metalloproteinases 2 and 9 was shown as observed in other models. This suggests that the SKH-1 mouse model is relevant for the investigation of the physiopathological process of skin lesions induced by L and to screen new treatment candidates.


Asunto(s)
Arsenicales/efectos adversos , Sustancias para la Guerra Química/toxicidad , Inflamación/patología , Piel/patología , Cicatrización de Heridas , Administración Cutánea , Animales , Agua Corporal/metabolismo , Modelos Animales de Enfermedad , Elasticidad/efectos de los fármacos , Eritema/inducido químicamente , Eritema/patología , Inflamación/inducido químicamente , Masculino , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones , Ratones Pelados , Piel/lesiones , Pérdida Insensible de Agua/efectos de los fármacos
20.
Toxicol Appl Pharmacol ; 273(3): 644-50, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-24141030

RESUMEN

Sulfur mustard (SM) is a chemical warfare agent that targets skin where it induces large blisters. DNA alkylation is a critical step to explain SM-induced cutaneous symptoms. We determined the kinetics of formation of main SM-DNA adducts and compare it with the development of the SM-induced pathogenesis in skin. SKH-1 mice were exposed to 2, 6 and 60 mg/kg of SM and treated skin was biopsied between 6h and 21 days. Formation of SM DNA adducts was dose-dependent with a maximum immediately after exposure. However, adducts were persistent and still detectable 21 days post-exposure. The time-dependent formation of DNA adducts was also found to be correlated with the appearance of apoptotic cells. This temporal correlation suggests that these two early events are responsible for the severity of the damage to the skin. Besides, SM-DNA adducts were also detected in areas located next to contaminated zone, thus suggesting that SM diffuses in skin. Altogether, this work provides for the first time a clear picture of SM-induced genotoxicity using DNA adducts as a marker.


Asunto(s)
Aductos de ADN/efectos de los fármacos , Gas Mostaza/toxicidad , Piel/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Sustancias para la Guerra Química/toxicidad , Cromatografía Líquida de Alta Presión , Aductos de ADN/metabolismo , Daño del ADN/efectos de los fármacos , Masculino , Ratones , Piel/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...