Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathogens ; 13(5)2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38787267

RESUMEN

Swine viral diseases have the capacity to cause significant losses and affect the sector's sustainability, a situation further exacerbated by the lack of antiviral drugs and the limited availability of effective vaccines. In this context, a novel point-of-care (POC) diagnostic device incorporating photonic integrated circuits (PICs), microfluidics and information, and communication technology into a single platform was developed for the field diagnosis of African swine fever (ASF) and classical swine fever (CSF). The device targets viral particles and has been validated using oral fluid and serum samples. Sensitivity, specificity, accuracy, precision, positive likelihood ratio (PLR), negative likelihood ratio (NLR), and diagnostic odds ratio (DOR) were calculated to assess the performance of the device, and PCR was the reference method employed. Its sensitivities were 80.97% and 79%, specificities were 88.46% and 79.07%, and DOR values were 32.25 and 14.21 for ASF and CSF, respectively. The proposed POC device and PIC sensors can be employed for the pen-side detection of ASF and CSF, thus introducing novel technological advancements in the field of animal diagnostics. The need for proper validation studies of POC devices is highlighted to optimize animal biosecurity.

2.
Animals (Basel) ; 11(11)2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34827925

RESUMEN

Viral diseases challenge the health and welfare of pigs and undermine the sustainability of swine farms. Their efficient control requires early and reliable diagnosis, highlighting the importance of Point of Care (POC) diagnostics in veterinary practice. The objective of this study was to validate a novel POC system that utilizes Photonic Integrated Circuits (PICs) and microfluidics to detect swine viral pathogens using oral fluids and Porcine Parvovirus (PPV) and Porcine Circovirus 2 (PCV-2) as proofs of concept. The sensitivity and specificity of the device were calculated for both viruses, and Receiver Operating Characteristic (ROC) curves were drawn. PPV had an Area Under Curve (AUC) value of 0.820 (95% CI: 0.760 to 0.880, p < 0.0001), and its optimal efficiency threshold of detection shifts was equal to 4.5 pm (68.6% sensitivity, 77.1% specificity and Limit of Detection (LOD) value 106 viral copies/mL). PCV-2 had an AUC value of 0.742 (95% CI: 0.670 to 0.815, p < 0.0001) and an optimal efficiency threshold of shifts equal to 6.5 pm (69.5% sensitivity, 70.3% specificity and LOD 3.3 × 105 copies/mL). In this work, it was proven that PICs can be exploited for the detection of swine viral diseases. The novel device can be directly deployed on farms as a POC diagnostics tool.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...