Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5613, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38965236

RESUMEN

Advancements in CRISPR technology, particularly the development of base editors, revolutionize genetic variant research. When combined with model organisms like zebrafish, base editors significantly accelerate and refine in vivo analysis of genetic variations. However, base editors are restricted by protospacer adjacent motif (PAM) sequences and specific editing windows, hindering their applicability to a broad spectrum of genetic variants. Additionally, base editors can introduce unintended mutations and often exhibit reduced efficiency in living organisms compared to cultured cell lines. Here, we engineer a suite of adenine base editors (ABEs) called ABE-Ultramax (Umax), demonstrating high editing efficiency and low rates of insertions and deletions (indels) in zebrafish. The ABE-Umax suite of editors includes ABEs with shifted, narrowed, or broadened editing windows, reduced bystander mutation frequency, and highly flexible PAM sequence requirements. These advancements have the potential to address previous challenges in disease modeling and advance gene therapy applications.


Asunto(s)
Adenina , Sistemas CRISPR-Cas , Edición Génica , Mutación INDEL , Pez Cebra , Pez Cebra/genética , Animales , Edición Génica/métodos , Adenina/metabolismo , ARN Guía de Sistemas CRISPR-Cas/genética , ARN Guía de Sistemas CRISPR-Cas/metabolismo , Animales Modificados Genéticamente , Alelos
2.
iScience ; 27(4): 109259, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38510125

RESUMEN

Fragile X syndrome (FXS) is caused by the loss of fragile X messenger ribonucleoprotein (FMRP), a translational regulator that binds the transcripts of proteins involved in synaptic function and plasticity. Dysregulated protein synthesis is a central effect of FMRP loss, however, direct translational modulation has not been leveraged in the treatment of FXS. Thus, we examined the effect of the translational modulator integrated stress response inhibitor (ISRIB) in treating synaptic and behavioral symptoms of FXS. We show that FMRP loss dysregulates synaptic protein abundance, stabilizing dendritic spines through increased PSD-95 levels while preventing spine maturation through reduced glutamate receptor accumulation, thus leading to the formation of dense, immature dendritic spines, characteristic of FXS patients and Fmr1 knockout (KO) mice. ISRIB rescues these deficits and improves social recognition in Fmr1 KO mice. These findings highlight the therapeutic potential of targeting core translational mechanisms in FXS and neurodevelopmental disorders more broadly.

3.
J Comp Physiol B ; 194(3): 241-252, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38324048

RESUMEN

Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.


Asunto(s)
Homeostasis , Oxidación-Reducción , Sueño , Animales , Sueño/fisiología , Especies Reactivas de Oxígeno/metabolismo , Filogenia , Neuropéptidos/metabolismo , Neuropéptidos/genética , Evolución Biológica , Humanos
4.
J Comp Physiol B ; 194(3): 253-263, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396062

RESUMEN

Individuals with neurodevelopmental disorders experience persistent sleep deficits, and there is increasing evidence that sleep dysregulation is an underlying cause, rather than merely an effect, of the synaptic and behavioral defects observed in these disorders. At the molecular level, dysregulation of the synaptic proteome is a common feature of neurodevelopmental disorders, though the mechanism connecting these molecular and behavioral phenotypes is an ongoing area of investigation. A role for eIF2α in shifting the local proteome in response to changes in the conditions at the synapse has emerged. Here, we discuss recent progress in characterizing the intersection of local synaptic translation and sleep and propose a reciprocal mechanism of dysregulation in the development of synaptic plasticity defects in neurodevelopmental disorders.


Asunto(s)
Trastornos del Neurodesarrollo , Plasticidad Neuronal , Sueño , Sinapsis , Plasticidad Neuronal/fisiología , Trastornos del Neurodesarrollo/fisiopatología , Trastornos del Neurodesarrollo/etiología , Trastornos del Neurodesarrollo/metabolismo , Animales , Humanos , Sueño/fisiología , Sinapsis/fisiología , Biosíntesis de Proteínas , Factor 2 Eucariótico de Iniciación/metabolismo
5.
Sleep Med Rev ; 63: 101616, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35381445

RESUMEN

Neurological disorders encompass an extremely broad range of conditions, including those that present early in development and those that progress slowly or manifest with advanced age. Although these disorders have distinct underlying etiologies, the activation of shared pathways, e.g., integrated stress response (ISR) and the development of shared phenotypes (sleep deficits) may offer clues toward understanding some of the mechanistic underpinnings of neurologic dysfunction. While it is incontrovertibly complex, the relationship between sleep and persistent stress in the brain has broad implications in understanding neurological disorders from development to degeneration. The convergent nature of the ISR could be a common thread linking genetically distinct neurological disorders through the dysregulation of a core cellular homeostasis pathway.


Asunto(s)
Enfermedades del Sistema Nervioso , Humanos , Sueño
6.
Science ; 375(6583): eabh3021, 2022 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-35201886

RESUMEN

Sleep quality declines with age; however, the underlying mechanisms remain elusive. We found that hyperexcitable hypocretin/orexin (Hcrt/OX) neurons drive sleep fragmentation during aging. In aged mice, Hcrt neurons exhibited more frequent neuronal activity epochs driving wake bouts, and optogenetic activation of Hcrt neurons elicited more prolonged wakefulness. Aged Hcrt neurons showed hyperexcitability with lower KCNQ2 expression and impaired M-current, mediated by KCNQ2/3 channels. Single-nucleus RNA-sequencing revealed adaptive changes to Hcrt neuron loss in the aging brain. Disruption of Kcnq2/3 genes in Hcrt neurons of young mice destabilized sleep, mimicking aging-associated sleep fragmentation, whereas the KCNQ-selective activator flupirtine hyperpolarized Hcrt neurons and rejuvenated sleep architecture in aged mice. Our findings demonstrate a mechanism underlying sleep instability during aging and a strategy to improve sleep continuity.


Asunto(s)
Envejecimiento , Neuronas/fisiología , Orexinas/fisiología , Privación de Sueño/fisiopatología , Sueño , Vigilia , Aminopiridinas/farmacología , Animales , Sistemas CRISPR-Cas , Electroencefalografía , Electromiografía , Femenino , Área Hipotalámica Lateral/fisiopatología , Canal de Potasio KCNQ2/genética , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/genética , Canal de Potasio KCNQ3/metabolismo , Masculino , Ratones , Narcolepsia/genética , Narcolepsia/fisiopatología , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas , Optogenética , Técnicas de Placa-Clamp , RNA-Seq , Calidad del Sueño
7.
Curr Opin Neurobiol ; 71: 44-51, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34583217

RESUMEN

All animals carefully studied sleep, suggesting that sleep as a behavioral state exists in all animal life. Such evolutionary maintenance of an otherwise vulnerable period of environmental detachment suggests that sleep must be integral in fundamental biological needs. Despite over a century of research, the knowledge of what sleep does at the tissue, cellular or molecular levels remain cursory. Currently, sleep is defined based on behavioral criteria and physiological measures rather than at the cellular or molecular level. Physiologically, sleep has been described as two main states, non-rapid eye moment (NREM) and REM/paradoxical sleep (PS), which are defined in the neocortex by synchronous oscillations and paradoxical wake-like activity, respectively. For decades, these two sleep states were believed to be defining characteristics of only mammalian and avian sleep. Recent work has revealed slow oscillation, silencing, and paradoxical/REM-like activities in reptiles, fish, flies, worms, and cephalopods suggesting that these sleep dynamics and associated physiological states may have emerged early in animal evolution. Here, we discuss these recent developments supporting the conservation of neural dynamics (silencing, oscillation, paradoxical activity) of sleep states across phylogeny.


Asunto(s)
Neocórtex , Sueño REM , Animales , Electroencefalografía , Mamíferos , Filogenia , Sueño/fisiología , Sueño REM/fisiología , Vigilia/fisiología
8.
PLoS Genet ; 16(12): e1009244, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33301440

RESUMEN

The genetic origin of human skin pigmentation remains an open question in biology. Several skin disorders and diseases originate from mutations in conserved pigmentation genes, including albinism, vitiligo, and melanoma. Teleosts possess the capacity to modify their pigmentation to adapt to their environmental background to avoid predators. This background adaptation occurs through melanosome aggregation (white background) or dispersion (black background) in melanocytes. These mechanisms are largely regulated by melanin-concentrating hormone (MCH) and α-melanocyte-stimulating hormone (α-MSH), two hypothalamic neuropeptides also involved in mammalian skin pigmentation. Despite evidence that the exogenous application of MCH peptides induces melanosome aggregation, it is not known if the MCH system is physiologically responsible for background adaptation. In zebrafish, we identify that MCH neurons target the pituitary gland-blood vessel portal and that endogenous MCH peptide expression regulates melanin concentration for background adaptation. We demonstrate that this effect is mediated by MCH receptor 2 (Mchr2) but not Mchr1a/b. mchr2 knock-out fish cannot adapt to a white background, providing the first genetic demonstration that MCH signaling is physiologically required to control skin pigmentation. mchr2 phenotype can be rescued in adult fish by knocking-out pomc, the gene coding for the precursor of α-MSH, demonstrating the relevance of the antagonistic activity between MCH and α-MSH in the control of melanosome organization. Interestingly, MCH receptor is also expressed in human melanocytes, thus a similar antagonistic activity regulating skin pigmentation may be conserved during evolution, and the dysregulation of these pathways is significant to our understanding of human skin disorders and cancers.


Asunto(s)
Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Hormonas Hipofisarias/metabolismo , Pigmentación de la Piel/genética , Animales , Hormonas Hipotalámicas/genética , Hipotálamo/citología , Hipotálamo/metabolismo , Melaninas/genética , Hormonas Estimuladoras de los Melanocitos/genética , Hormonas Estimuladoras de los Melanocitos/metabolismo , Melanocitos/metabolismo , Neuronas/metabolismo , Hormonas Hipofisarias/genética , Pez Cebra
9.
10.
Nature ; 571(7764): 198-204, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292557

RESUMEN

Slow-wave sleep and rapid eye movement (or paradoxical) sleep have been found in mammals, birds and lizards, but it is unclear whether these neuronal signatures are found in non-amniotic vertebrates. Here we develop non-invasive fluorescence-based polysomnography for zebrafish, and show-using unbiased, brain-wide activity recording coupled with assessment of eye movement, muscle dynamics and heart rate-that there are at least two major sleep signatures in zebrafish. These signatures, which we term slow bursting sleep and propagating wave sleep, share commonalities with those of slow-wave sleep and paradoxical or rapid eye movement sleep, respectively. Further, we find that melanin-concentrating hormone signalling (which is involved in mammalian sleep) also regulates propagating wave sleep signatures and the overall amount of sleep in zebrafish, probably via activation of ependymal cells. These observations suggest that common neural signatures of sleep may have emerged in the vertebrate brain over 450 million years ago.


Asunto(s)
Neuronas/fisiología , Sueño/fisiología , Pez Cebra/fisiología , Animales , Evolución Biológica , Encéfalo/citología , Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Encéfalo/fisiopatología , Epéndimo/citología , Movimientos Oculares , Fluorescencia , Frecuencia Cardíaca , Hipnóticos y Sedantes/farmacología , Hormonas Hipotalámicas/metabolismo , Melaninas/metabolismo , Neuronas/efectos de los fármacos , Pigmentación/fisiología , Hormonas Hipofisarias/metabolismo , Polisomnografía/métodos , Sueño/efectos de los fármacos , Privación de Sueño/fisiopatología , Sueño REM/efectos de los fármacos , Sueño REM/fisiología , Sueño de Onda Lenta/efectos de los fármacos , Sueño de Onda Lenta/fisiología
11.
Curr Biol ; 29(12): R585-R588, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-31211981

RESUMEN

A novel potential role of sleep is neuronal DNA repair. Live imaging of chromosome dynamics in zebrafish neurons has uncovered how sleep can repair DNA breaks accumulated during wake to maintain genome integrity and likely slow down neuronal aging.


Asunto(s)
Neuronas , Sueño , Animales , Cromosomas , Daño del ADN , Reparación del ADN
12.
Cell ; 177(4): 970-985.e20, 2019 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-31031000

RESUMEN

Prolonged behavioral challenges can cause animals to switch from active to passive coping strategies to manage effort-expenditure during stress; such normally adaptive behavioral state transitions can become maladaptive in psychiatric disorders such as depression. The underlying neuronal dynamics and brainwide interactions important for passive coping have remained unclear. Here, we develop a paradigm to study these behavioral state transitions at cellular-resolution across the entire vertebrate brain. Using brainwide imaging in zebrafish, we observed that the transition to passive coping is manifested by progressive activation of neurons in the ventral (lateral) habenula. Activation of these ventral-habenula neurons suppressed downstream neurons in the serotonergic raphe nucleus and caused behavioral passivity, whereas inhibition of these neurons prevented passivity. Data-driven recurrent neural network modeling pointed to altered intra-habenula interactions as a contributory mechanism. These results demonstrate ongoing encoding of experience features in the habenula, which guides recruitment of downstream networks and imposes a passive coping behavioral strategy.


Asunto(s)
Adaptación Psicológica/fisiología , Habénula/fisiología , Animales , Conducta Animal/fisiología , Encéfalo/metabolismo , Habénula/metabolismo , Larva , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Núcleos del Rafe/metabolismo , Neuronas Serotoninérgicas/metabolismo , Serotonina , Estrés Fisiológico/fisiología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo
13.
Curr Biol ; 28(9): R558-R560, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29738730

RESUMEN

Sleep durations vary greatly across animals from 2 to 20 hours with no clear explanation. A small Mexican cavefish reveals how the brain can adapt to increase its wake-stabilizing hypocretin circuit and dramatically reduce sleep, likely to allow adaptive foraging.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neuropéptidos , Animales , Neuronas , Orexinas , Prosencéfalo , Sueño
14.
Nucleic Acids Res ; 46(7): 3517-3531, 2018 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-29518216

RESUMEN

Thousands of human disease-associated single nucleotide polymorphisms (SNPs) lie in the non-coding genome, but only a handful have been demonstrated to affect gene expression and human biology. We computationally identified risk-associated SNPs in deeply conserved non-exonic elements (CNEs) potentially contributing to 45 human diseases. We further demonstrated that human CNE1/rs17421627 associated with retinal vasculature defects showed transcriptional activity in the zebrafish retina, while introducing the risk-associated allele completely abolished CNE1 enhancer activity. Furthermore, deletion of CNE1 led to retinal vasculature defects and to a specific downregulation of microRNA-9, rather than MEF2C as predicted by the original genome-wide association studies. Consistent with these results, miR-9 depletion affects retinal vasculature formation, demonstrating MIR-9-2 as a critical gene underpinning the associated trait. Importantly, we validated that other CNEs act as transcriptional enhancers that can be disrupted by conserved non-coding SNPs. This study uncovers disease-associated non-coding mutations that are deeply conserved, providing a path for in vivo testing to reveal their cis-regulated genes and biological roles.


Asunto(s)
Elementos de Facilitación Genéticos/genética , MicroARNs/genética , Vasculitis Retiniana/genética , Alelos , Animales , Secuencia Conservada/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo , Humanos , Factores de Transcripción MEF2/genética , Mutación , Polimorfismo de Nucleótido Simple/genética , Retina/metabolismo , Retina/patología , Vasculitis Retiniana/patología , Pez Cebra/genética
15.
Neural Regen Res ; 12(11): 1765-1767, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29239312

RESUMEN

In humans, optic nerve injuries and associated neurodegenerative diseases are often followed by permanent vision loss. Consequently, an important challenge is to develop safe and effective methods to replace retinal neurons and thereby restore neuronal functions and vision. Identifying cellular and molecular mechanisms allowing to replace damaged neurons is a major goal for basic and translational research in regenerative medicine. Contrary to mammals, the zebrafish has the capacity to fully regenerate entire parts of the nervous system, including retina. This regenerative process depends on endogenous retinal neural stem cells, the Müller glial cells. Following injury, zebrafish Müller cells go back into cell cycle to proliferate and generate new neurons, while mammalian Müller cells undergo reactive gliosis. Recently, transcription factors and microRNAs have been identified to control the formation of new neurons derived from zebrafish and mammalian Müller cells, indicating that cellular reprogramming can be an efficient strategy to regenerate human retinal neurons. Here we discuss recent insights into the use of endogenous neural stem cell reprogramming for neuronal regeneration, differences between zebrafish and mammalian Müller cells, and the need to pursue the identification and characterization of new molecular factors with an instructive and potent function in order to develop theurapeutic strategies for eye diseases.

16.
Cancer Discov ; 7(10): 1184-1199, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28790031

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the most metastatic and deadly cancers. Despite the clinical significance of metastatic spread, our understanding of molecular mechanisms that drive PDAC metastatic ability remains limited. By generating a genetically engineered mouse model of human PDAC, we uncover a transient subpopulation of cancer cells with exceptionally high metastatic ability. Global gene expression profiling and functional analyses uncovered the transcription factor BLIMP1 as a driver of PDAC metastasis. The highly metastatic PDAC subpopulation is enriched for hypoxia-induced genes, and hypoxia-mediated induction of BLIMP1 contributes to the regulation of a subset of hypoxia-associated gene expression programs. These findings support a model in which upregulation of BLIMP1 links microenvironmental cues to a metastatic stem cell character.Significance: PDAC is an almost uniformly lethal cancer, largely due to its tendency for metastasis. We define a highly metastatic subpopulation of cancer cells, uncover a key transcriptional regulator of metastatic ability, and define hypoxia as an important factor within the tumor microenvironment that increases metastatic proclivity. Cancer Discov; 7(10); 1184-99. ©2017 AACR.See related commentary by Vakoc and Tuveson, p. 1067This article is highlighted in the In This Issue feature, p. 1047.


Asunto(s)
Carcinoma Ductal Pancreático/patología , Perfilación de la Expresión Génica/métodos , Neoplasias Pancreáticas/patología , Factor 1 de Unión al Dominio 1 de Regulación Positiva/genética , Análisis de Secuencia de ARN/métodos , Regulación hacia Arriba , Animales , Carcinoma Ductal Pancreático/genética , Hipoxia de la Célula , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Ingeniería Genética , Humanos , Ratones , Metástasis de la Neoplasia , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Microambiente Tumoral
17.
Cell Rep ; 20(7): 1533-1542, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28813666

RESUMEN

In the developing brain, neurons expressing VEGF-A and blood vessels grow in close apposition, but many of the molecular pathways regulating neuronal VEGF-A and neurovascular system development remain to be deciphered. Here, we show that miR-9 links neurogenesis and angiogenesis through the formation of neurons expressing VEGF-A. We found that miR-9 directly targets the transcription factors TLX and ONECUTs to regulate VEGF-A expression. miR-9 inhibition leads to increased TLX and ONECUT expression, resulting in VEGF-A overexpression. This untimely increase of neuronal VEGF-A signal leads to the thickening of blood vessels at the expense of the normal formation of the neurovascular network in the brain and retina. Thus, this conserved transcriptional cascade is critical for proper brain development in vertebrates. Because of this dual role on neural stem cell proliferation and angiogenesis, miR-9 and its downstream targets are promising factors for cellular regenerative therapy following stroke and for brain tumor treatment.


Asunto(s)
Corteza Cerebral/metabolismo , MicroARNs/genética , Neovascularización Fisiológica/genética , Células-Madre Neurales/metabolismo , Neurogénesis/genética , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Secuencia de Bases , Sitios de Unión , Diferenciación Celular , Proliferación Celular , Corteza Cerebral/crecimiento & desarrollo , Embrión no Mamífero , Feto , Regulación del Desarrollo de la Expresión Génica , Factor Nuclear 6 del Hepatocito/genética , Factor Nuclear 6 del Hepatocito/metabolismo , Humanos , MicroARNs/metabolismo , Morfogénesis/genética , Células-Madre Neurales/citología , Neuronas/metabolismo , Neuronas/patología , Receptores Nucleares Huérfanos , Cultivo Primario de Células , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Retina/crecimiento & desarrollo , Retina/metabolismo , Transducción de Señal , Tubulina (Proteína)/genética , Tubulina (Proteína)/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra
18.
Sci Rep ; 7: 41528, 2017 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-28139691

RESUMEN

RFamide neuropeptide VF (NPVF) is expressed by neurons in the hypothalamus and has been implicated in nociception, but the circuit mechanisms remain unexplored. Here, we studied the structural and functional connections from NPVF neurons to downstream targets in the context of nociception, using novel transgenic lines, optogenetics, and calcium imaging in behaving larval zebrafish. We found a specific projection from NPVF neurons to serotonergic neurons in the ventral raphe nucleus (vRN). We showed NPVF neurons and vRN are suppressed and excited by noxious stimuli, respectively. We combined optogenetics with calcium imaging and pharmacology to demonstrate that stimulation of NPVF cells suppresses neuronal activity in vRN. During noxious stimuli, serotonergic neurons activation was due to a suppression of an inhibitory NPVF-ventral raphe peptidergic projection. This study reveals a novel NPVF-vRN functional circuit modulated by noxious stimuli in vertebrates.


Asunto(s)
Hipotálamo/metabolismo , Neuropéptidos/metabolismo , Nocicepción , Núcleos del Rafe/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Neuronas/metabolismo , Neuropéptidos/química , Serotonina/metabolismo
19.
Mol Neurobiol ; 54(8): 6581-6597, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27734337

RESUMEN

Sleep is tightly regulated by the circadian clock and homeostatic mechanisms. Although the sleep/wake cycle is known to be associated with structural and physiological synaptic changes that benefit the brain, the function of sleep is still debated. The hypothalamic hypocretin/orexin (Hcrt) neurons regulate various functions including feeding, reward, sleep, and wake. Continuous imaging of single neuronal circuits in live animals is vital to understanding the role of sleep in regulating synaptic dynamics, and the transparency of the zebrafish model enables time-lapse imaging of single synapses during both day and night. Here, we use the gephyrin (Gphnb) protein, a central inhibitory synapse organizer, as a fluorescent post-synaptic marker of inhibitory synapses. Double labeling showed that Gphnb-tagRFP and collybistin-EGFP clusters co-localized in dendritic inhibitory synapses. Using a transgenic hcrt:Gphnb-EGFP zebrafish, we showed that the number of inhibitory synapses in the dendrites of Hcrt neurons was increased during development. To determine the effect of sleep on the inhibitory synapses, we performed two-photon live imaging of Gphnb-EGFP in Hcrt neurons during day and night, under light/dark and constant light and dark conditions, and following sleep deprivation (SD). We found that synapse number increased during the night under light/dark conditions but that these changes were eliminated under constant light or dark conditions. SD reduced synapse number during the night, and the number increased during post-deprivation daytime sleep rebound. These results suggest that rhythmic structural plasticity of inhibitory synapses in Hcrt dendrites is independent of the circadian clock and is modulated by consolidated wake and sleep.


Asunto(s)
Dendritas/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sueño/fisiología , Sinapsis/fisiología , Animales , Animales Modificados Genéticamente , Relojes Circadianos/fisiología , Hipotálamo/fisiología , Inhibición Neural/fisiología , Orexinas/metabolismo , Pez Cebra
20.
Elife ; 52016 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-27770568

RESUMEN

The distribution of proteins within sub-synaptic compartments is an essential aspect of their neurological function. Current methodologies, such as electron microscopy (EM) and super-resolution imaging techniques, can provide the precise localization of proteins, but are often limited to a small number of one-time observations with narrow spatial and molecular coverage. The diversity of synaptic proteins and synapse types demands synapse analysis on a scale that is prohibitive with current methods. Here, we demonstrate SubSynMAP, a fast, multiplexed sub-synaptic protein analysis method using wide-field data from deconvolution array tomography (ATD). SubSynMAP generates probability distributions for that reveal the functional range of proteins within the averaged synapse of a particular class. This enables the differentiation of closely juxtaposed proteins. Using this method, we analyzed 15 synaptic proteins in normal and Fragile X mental retardation syndrome (FXS) model mouse cortex, and revealed disease-specific modifications of sub-synaptic protein distributions across synapse classes and cortical layers.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/patología , Técnicas de Inactivación de Genes , Imagen Óptica/métodos , Proteínas de Unión al ARN/análisis , Sinapsis/química , Animales , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA