Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
PLoS One ; 19(5): e0302692, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38722893

RESUMEN

Tobacco vein necrosis (TVN) is a complex phenomenon regulated by different genetic determinants mapped in the HC-Pro protein (amino acids N330, K391 and E410) and in two regions of potato virus Y (PVY) genome, corresponding to the cytoplasmic inclusion (CI) protein and the nuclear inclusion protein a-protease (NIa-Pro), respectively. A new determinant of TVN was discovered in the MK isolate of PVY which, although carried the HC-Pro determinants associated to TVN, did not induce TVN. The HC-Pro open reading frame (ORF) of the necrotic infectious clone PVY N605 was replaced with that of the non-necrotic MK isolate, which differed only by one amino acid at position 392 (T392 instead of I392). The cDNA clone N605_MKHCPro inoculated in tobacco induced only weak mosaics at the systemic level, demostrating that the amino acid at position 392 is a new determinant for TVN. No significant difference in accumulation in tobacco was observed between N605 and N605_MKHCPro. Since phylogenetic analyses showed that the loss of necrosis in tobacco has occurred several times independently during PVY evolution, these repeated evolutions strongly suggest that tobacco necrosis is a costly trait in PVY.


Asunto(s)
Nicotiana , Filogenia , Enfermedades de las Plantas , Mutación Puntual , Potyvirus , Proteínas Virales , Nicotiana/virología , Potyvirus/genética , Potyvirus/patogenicidad , Enfermedades de las Plantas/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Secuencia de Aminoácidos , Necrosis , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética
2.
PLoS Pathog ; 20(1): e1011911, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38206964

RESUMEN

The discrepancy between short- and long-term rate estimates, known as the time-dependent rate phenomenon (TDRP), poses a challenge to extrapolating evolutionary rates over time and reconstructing evolutionary history of viruses. The TDRP reveals a decline in evolutionary rate estimates with the measurement timescale, explained empirically by a power-law rate decay, notably observed in animal and human viruses. A mechanistic evolutionary model, the Prisoner of War (PoW) model, has been proposed to address TDRP in viruses. Although TDRP has been studied in animal viruses, its impact on plant virus evolutionary history remains largely unexplored. Here, we investigated the consequences of TDRP in plant viruses by applying the PoW model to reconstruct the evolutionary history of sobemoviruses, plant pathogens with significant importance due to their impact on agriculture and plant health. Our analysis showed that the Sobemovirus genus dates back over four million years, indicating an ancient origin. We found evidence that supports deep host jumps to Poaceae, Fabaceae, and Solanaceae occurring between tens to hundreds of thousand years ago, followed by specialization. Remarkably, the TDRP-corrected evolutionary history of sobemoviruses was extended far beyond previous estimates that had suggested their emergence nearly 9,000 years ago, a time coinciding with the Neolithic period in the Near East. By incorporating sequences collected through metagenomic analyses, the resulting phylogenetic tree showcases increased genetic diversity, reflecting a deep history of sobemovirus species. We identified major radiation events beginning between 4,600 to 2,000 years ago, which aligns with the Neolithic period in various regions, suggesting a period of rapid diversification from then to the present. Our findings make a case for the possibility of deep evolutionary origins of plant viruses.


Asunto(s)
Virus de Plantas , Virus ARN , Animales , Humanos , Filogenia , Evolución Biológica , Virus ARN/genética , Virus de Plantas/genética , Plantas , Evolución Molecular
3.
Viruses ; 15(11)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-38005837

RESUMEN

In the past decade, severe epidemics of cucumber mosaic virus (CMV) have caused significant damage to Espelette pepper crops. This virus threatens the production of Espelette pepper, which plays a significant role in the local economy and touristic attractiveness of the French Basque Country, located in southwestern France. In 2021 and 2022, CMV was detected via double-antibody sandwich enzyme-linked immunosorbent assays (DAS-ELISAs) in Gorria pepper seed lots harvested from naturally infected fields scattered throughout the entire Espelette pepper production area. These seed lots were used in greenhouse grow-out tests to determine whether CMV could be transmitted to seedlings from contaminated seeds, using visual symptom assessment, DAS-ELISAs, and reverse transcription-polymerase chain reaction (RT-PCR). Despite the widespread occurrence of CMV in seeds of field samples, the grow-out experiments on a total of over 5000 seedlings yielded no evidence of seed transmission of local CMV isolates in Gorria pepper. Therefore, rather than seeds from infected pepper plants, sources of CMV inoculum in Espelette are more likely to be alternative hosts present in and around pepper fields that can allow for the survival of CMV during the off-season. These results have important epidemiological implications and will guide the choice of effective measures to control current epidemics.


Asunto(s)
Cucumovirus , Infecciones por Citomegalovirus , Cucumovirus/genética , Semillas , Productos Agrícolas , Francia/epidemiología
4.
Viruses ; 15(5)2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-37243167

RESUMEN

The dominant Pvr4 gene in pepper (Capsicum annuum) confers resistance to members of six potyvirus species, all of which belong to the Potato virus Y (PVY) phylogenetic group. The corresponding avirulence factor in the PVY genome is the NIb cistron (i.e., RNA-dependent RNA polymerase). Here, we describe a new source of potyvirus resistance in the Guatemalan accession C. annuum cv. PM949. PM949 is resistant to members of at least three potyvirus species, a subset of those controlled by Pvr4. The F1 progeny between PM949 and the susceptible cultivar Yolo Wonder was susceptible to PVY, indicating that the resistance is recessive. The segregation ratio between resistant and susceptible plants observed in the F2 progeny matched preferably with resistance being determined by two unlinked recessive genes independently conferring resistance to PVY. Inoculations by grafting resulted in the selection of PVY mutants breaking PM949 resistance and, less efficiently, Pvr4-mediated resistance. The codon substitution E472K in the NIb cistron of PVY, which was shown previously to be sufficient to break Pvr4 resistance, was also sufficient to break PM949 resistance, a rare example of cross-pathogenicity effect. In contrast, the other selected NIb mutants showed specific infectivity in PM949 or Pvr4 plants. Comparison of Pvr4 and PM949 resistance, which share the same target in PVY, provides interesting insights into the determinants of resistance durability.


Asunto(s)
Capsicum , Potyvirus , Solanum tuberosum , ARN Polimerasa Dependiente del ARN/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Filogenia , Antivirales , Enfermedades de las Plantas , Solanum tuberosum/metabolismo
5.
Curr Top Microbiol Immunol ; 439: 121-138, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592244

RESUMEN

The wealth of variability amongst genes controlling immunity against potyviruses in pepper (Capsicum spp.) has been instrumental in understanding plant-virus co-evolution and major determinants of plant resistance durability. Characterization of the eukaryotic initiation factor 4E1 (eIF4E1), involved in mRNA translation, as the basis of potyvirus resistance in pepper initiated a large body of work that showed that recessive resistance to potyviruses and other single-stranded positive-sense RNA viruses resulted from mutations in eukaryotic initiation factors in many plant crop species. Combining mutations in different eIF4Es in the same pepper genotype had complex effects on the breadth of the resistance spectrum and on resistance durability, revealing a trade-off between these two traits. In addition, combining eIF4E1 mutations with a quantitatively resistant genetic background had a strong positive effect on resistance durability. Analysing the evolutionary forces imposed by pepper genotypes onto virus populations allowed identifying three key factors improving plant resistance durability: the complexity of mutational pathways involved in virus adaptation to the plant resistance, the decrease of competitivity induced by these mutations on the virus and the intensity of genetic drift imposed by plant genotypes on the virus during its infection cycle.


Asunto(s)
Potyvirus , Potyvirus/genética , Potyvirus/metabolismo , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Mutación , Plantas , Genotipo
6.
Mol Plant Pathol ; 23(2): 254-264, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34729890

RESUMEN

We performed a genome-wide association study of pepper (Capsicum annuum) tolerance to potato virus Y (PVY). For 254 pepper accessions, we estimated the tolerance to PVY as the coefficient of regression of the fresh weight (or height) of PVY-infected and mock-inoculated plants against within-plant virus load. Small (strongly negative) coefficients of regression indicate low tolerance because plant biomass or growth decreases sharply as virus load increases. The tolerance level varied largely, with some pepper accessions showing no symptoms or fairly mild mosaics, whereas about half (48%) of the accessions showed necrotic symptoms. We found two adjacent single-nucleotide polymorphisms (SNPs) at one extremity of chromosome 9 that were significantly associated with tolerance to PVY. Similarly, in three biparental pepper progenies, we showed that the induction of necrosis on PVY systemic infection segregated as a monogenic trait determined by a locus on chromosome 9. Our results also demonstrate the existence of a negative correlation between resistance and tolerance among the cultivated pepper accessions at both the phenotypic and genetic levels. By comparing the distributions of the tolerance-associated SNP alleles and previously identified PVY resistance-associated SNP alleles, we showed that cultivated pepper accessions possess favourable alleles for both resistance and tolerance less frequently than expected under random associations, while the minority of wild pepper accessions frequently combined resistance and tolerance alleles. This divergent evolution of PVY resistance and tolerance could be related to pepper domestication or farmer's selection.


Asunto(s)
Capsicum , Potyvirus , Alelos , Capsicum/genética , Estudio de Asociación del Genoma Completo , Enfermedades de las Plantas/genética , Potyvirus/genética
7.
Annu Rev Phytopathol ; 59: 125-152, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-33929880

RESUMEN

Owing to their evolutionary potential, plant pathogens are able to rapidly adapt to genetically controlled plant resistance, often resulting in resistance breakdown and major epidemics in agricultural crops. Various deployment strategies have been proposed to improve resistance management. Globally, these rely on careful selection of resistance sources and their combination at various spatiotemporal scales (e.g., via gene pyramiding, crop rotations and mixtures, landscape mosaics). However, testing and optimizing these strategies using controlled experiments at large spatiotemporal scales are logistically challenging. Mathematical models provide an alternative investigative tool, and many have been developed to explore resistance deployment strategies under various contexts. This review analyzes 69 modeling studies in light of specific model structures (e.g., demographic or demogenetic, spatial or not), underlying assumptions (e.g., whether preadapted pathogens are present before resistance deployment), and evaluation criteria (e.g., resistance durability, disease control, cost-effectiveness). It highlights major research findings and discusses challenges for future modeling efforts.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , Productos Agrícolas , Resistencia a la Enfermedad/genética
8.
Virus Res ; 286: 198042, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32504705

RESUMEN

Plant viral diseases represent a significant burden to plant health, and their highest impact in Mediterranean agriculture is on vegetables grown under intensive horticultural practices. In order to understand better virus evolution and emergence, the most prevalent viruses were mapped in the main cucurbitaceous (melon, squashes) and solanaceous (tomato, pepper) crops and in some wild hosts in the French Mediterranean area, and virus diversity, evolution and population structure were studied through molecular epidemiology approaches. Surveys were performed in summer 2016 and 2017, representing a total of 1530 crop samples and 280 weed samples. The plant samples were analysed using serological and molecular approaches, including high-throughput sequencing (HTS). The viral species and their frequency in crops were quite similar to those of surveys conducted ten years before in the same areas. Contrary to other Mediterranean countries, aphid-transmitted viruses remain the most prevalent in France whereas whitefly-transmitted ones have not yet emerged. However, HTS analysis of viral evolution revealed the appearance of undescribed viral variants, especially for watermelon mosaic virus (WMV) in cucurbits, or variants not present in France before, as for cucumber mosaic virus (CMV) in solanaceous crops. Deep sequencing also revealed complex virus populations within individual plants with frequent recombination or reassortment. The spatial genetic structure of cucurbit aphid-borne yellows virus (CABYV) was related to the landscape structure, whereas in the case of WMV, the recurrence of introduction events and probable human exchanges of plant material resulted in complex spatial pattern of genetic variation.


Asunto(s)
Cucurbita/virología , Evolución Molecular , Enfermedades de las Plantas/virología , Solanum lycopersicum/virología , Virus/genética , Animales , Áfidos/virología , Productos Agrícolas/virología , Francia , Insectos Vectores/virología , Región Mediterránea , Filogenia , Virus Reordenados/genética , Recombinación Genética , Virus/clasificación
9.
Virus Res ; 280: 197899, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-32067976

RESUMEN

The Plasma membrane Cation binding Protein 1 (PCaP1) has been shown to be important for the intra-cellular movement of two members of the Potyvirus genus in arabidopsis and tobacco plants. In this study, the orthologous PCaP1 gene of pepper (Capsicum annuum) was examined for its role in the accumulation of Potato virus Y, type member of the Potyvirus. Downregulation of C. annuum PCaP (CaPCaP) through tobacco rattle virus-induced gene silencing, resulted in lower accumulation of potato virus Y (PVY) in pepper plants. Using an improved pepper protoplast isolation protocol, we showed that knockdown of CaPCaP negatively affected PVY accumulation at the within-cell level in pepper in contrast with the turnip mosaic virus-arabidopsis pathosystem. Conversely, following overexpression of CaPCaP, the accumulation of PVY at the systemic level was increased. The results provide further knowledge on the role of PCaP in the potyvirus infection process and reveal differences of its action among different pathosystems.


Asunto(s)
Capsicum/virología , Proteínas de la Membrana/genética , Proteínas de Plantas/genética , Potyvirus/fisiología , Protoplastos/virología , Cationes , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/metabolismo , Enfermedades de las Plantas/virología , Proteínas de Plantas/metabolismo , Potyvirus/genética
10.
Viruses ; 12(1)2020 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-31963241

RESUMEN

Virus host range, i.e., the number and diversity of host species of viruses, is an important determinant of disease emergence and of the efficiency of disease control strategies. However, for plant viruses, little is known about the genetic or ecological factors involved in the evolution of host range. Using available genome sequences and host range data, we performed a phylogenetic analysis of host range evolution in the genus Potyvirus, a large group of plant RNA viruses that has undergone a radiative evolution circa 7000 years ago, contemporaneously with agriculture intensification in mid Holocene. Maximum likelihood inference based on a set of 59 potyviruses and 38 plant species showed frequent host range changes during potyvirus evolution, with 4.6 changes per plant species on average, including 3.1 host gains and 1.5 host loss. These changes were quite recent, 74% of them being inferred on the terminal branches of the potyvirus tree. The most striking result was the high frequency of correlated host gains occurring repeatedly in different branches of the potyvirus tree, which raises the question of the dependence of the molecular and/or ecological mechanisms involved in adaptation to different plant species.


Asunto(s)
Especificidad del Huésped , Filogenia , Enfermedades de las Plantas/virología , Plantas/virología , Potyvirus/clasificación , Evolución Biológica , Potyvirus/patogenicidad
11.
J Gen Virol ; 101(3): 334-346, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31958051

RESUMEN

Tomato spotted wilt virus (TSWV; genus Orthotospovirus, family Tospoviridae) has a huge impact on a large range of plants worldwide. In this study, we determined the sequence of the large (L) RNA segment that encodes the RNA-dependent RNA polymerase (RdRp) from a TSWV isolate (LYE51) collected in the south of France. Analysis of the phylogenetic relationships of TSWV-LYE51 with other TSWV isolates shows that it is closely related to other European isolates. A 3D model of TSWV-LYE51 RdRp was built by homology with the RdRp structure of the La Crosse virus (genus Orthobunyavirus, family Peribunyaviridae). Finally, an analysis of positive and negative selection was carried out on 30 TSWV full-length RNA L sequences and compared with the phylogeny and the protein structure data. We showed that the seven codons that are under positive selection are distributed all along the RdRp gene. By contrast, the codons associated with negative selection are especially concentrated in three highly constrained domains: the endonuclease in charge of the cap-snatching mechanism, the thumb domain and the mid domain. Those three domains could constitute good candidates to look for host targets on which genetic resistance by loss of susceptibility could be developed.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Molecular , Modelos Moleculares , Dominios Proteicos/genética , ARN Polimerasa Dependiente del ARN/genética , Homología Estructural de Proteína , Tospovirus/enzimología , Codón/genética , Francia , Genoma Viral/genética , Solanum lycopersicum/virología , Filogenia , Enfermedades de las Plantas/virología , ARN Viral/genética , Secuenciación Completa del Genoma
12.
Mol Plant Pathol ; 21(1): 3-16, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31605444

RESUMEN

In this study, we looked for genetic factors in the pepper (Capsicum annuum) germplasm that control the number of potato virus Y (PVY) particles entering the plant (i.e. effective population size at inoculation) and the PVY accumulation at the systemic level (i.e. census population size). Using genotyping-by-sequencing (GBS) in a core collection of 256 pepper accessions, we obtained 10 307 single nucleotide polymorphisms (SNPs) covering the whole genome. Genome-wide association studies (GWAS) detected seven SNPs significantly associated with the virus population size at inoculation and/or systemic level on chromosomes 4, 6, 9 and 12. Two SNPs on chromosome 4 associated with both PVY population sizes map closely to the major resistance gene pvr2 encoding the eukaryotic initiation factor 4E. No obvious candidates for resistance were identified in the confidence intervals for the other chromosomes. SNPs detected on chromosomes 6 and 12 colocalized with resistance quantitative trait loci (QTLs) previously identified with a biparental population. These results show the efficiency of GBS and GWAS in C. annuum, indicate highly consistent results between GWAS and classical QTL mapping, and suggest that resistance QTLs identified with a biparental population are representative of a much larger collection of pepper accessions. Moreover, the resistance alleles at these different loci were more frequently combined than expected by chance in the core collection, indicating widespread pyramiding of resistance QTLs and widespread combination of resistance QTLs and major effect genes. Such pyramiding may increase resistance efficiency and/or durability.


Asunto(s)
Capsicum/genética , Capsicum/virología , Enfermedades de las Plantas/genética , Potyvirus/genética , Sitios de Carácter Cuantitativo , Mapeo Cromosómico , Cromosomas de las Plantas , Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/genética , Estudio de Asociación del Genoma Completo , Genotipo , Polimorfismo de Nucleótido Simple
13.
Virology ; 539: 11-17, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31622792

RESUMEN

Translation initiation factors 4E (eIF4E) are the main source of resistance to potyvirus. We systematically assessed tomato single and double knock-out (KO) mutants of members of the eIF4E-coding gene family for resistance to Pepper veinal mottle virus (PVMV), a major constraint to tomato production. We show that the KO mutant of eIF4E2 has partial resistance to PVMV isolate IC, with plants harboring weak symptoms and low virus loads at the systemic level. The causal effect of eIF4E2 loss-of-function on resistance was confirmed on a progeny segregating for the KO mutation. The eIF4E2 KO mutant was resistant to six of the eight PVMV isolates tested and no resistance to other potyviruses was observed. This is the first evidence that mutation of eIF4E2 is in itself conferring resistance to a potyvirus and 3D protein modelling suggests that the eIF4E2 gene could be converted into a functional resistance allele.


Asunto(s)
Resistencia a la Enfermedad/genética , Factor 4E Eucariótico de Iniciación/genética , Potyvirus/patogenicidad , Solanum lycopersicum/genética , Capsicum/genética , Capsicum/virología , Interacciones Huésped-Patógeno , Mutación con Pérdida de Función , Solanum lycopersicum/virología , Familia de Multigenes , Enfermedades de las Plantas/virología , Potyvirus/aislamiento & purificación , Carga Viral
14.
Philos Trans R Soc Lond B Biol Sci ; 374(1775): 20180263, 2019 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-31056046

RESUMEN

Plant qualitative resistances to viruses are natural exhaustible resources that can be impaired by the emergence of resistance-breaking (RB) virus variants. Mathematical modelling can help determine optimal strategies for resistance durability by a rational deployment of resistance in agroecosystems. Here, we propose an innovative approach, built up from our previous empirical studies, based on plant cultivars combining qualitative resistance with quantitative resistance narrowing population bottlenecks exerted on viruses during host-to-host transmission and/or within-host infection. Narrow bottlenecks are expected to slow down virus adaptation to plant qualitative resistance. To study the effect of bottleneck size on yield, we developed a stochastic epidemic model with mixtures of susceptible and resistant plants, relying on continuous-time Markov chain processes. Overall, narrow bottlenecks are beneficial when the fitness cost of RB virus variants in susceptible plants is intermediate. In such cases, they could provide up to 95 additional percentage points of yield compared with deploying a qualitative resistance alone. As we have shown in previous works that virus population bottlenecks are at least partly heritable plant traits, our results suggest that breeding and deploying plant varieties exposing virus populations to narrowed bottlenecks will increase yield and delay the emergence of RB variants. This article is part of the theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes'. This issue is linked with the subsequent theme issue 'Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control'.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas/inmunología , Plantas/virología , Epidemias , Modelos Estadísticos , Fitomejoramiento , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/estadística & datos numéricos , Enfermedades de las Plantas/virología , Plantas/genética , Plantas/inmunología , Fenómenos Fisiológicos de los Virus , Virus/genética , Virus/aislamiento & purificación
15.
Mol Plant Pathol ; 20(8): 1051-1066, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31115167

RESUMEN

Many recessive resistances against potyviruses are mediated by eukaryotic translation initiation factor 4E (eIF4E). In tobacco, the va resistance gene commonly used to control Potato virus Y (PVY) corresponds to a large deletion affecting the eIF4E-1 gene on chromosome 21. Here, we compared the resistance durability conferred by various types of mutations affecting eIF4E-1 (deletions of various sizes, frameshift or nonsense mutations). The 'large deletion' genotypes displayed the broadest and most durable resistance, whereas frameshift and nonsense mutants displayed a less durable resistance, with rapid and frequent apparition of resistance-breaking variants. In addition, genetic and transcriptomic analyses revealed that resistance durability is strongly impacted by a complex genetic locus on chromosome 14, which contains three other eIF4E genes. One of these, eIF4E-3, is rearranged as a hybrid gene between eIF4E-2 and eIF4E-3 (eIF4E-2-3 ) in the genotypes showing the most durable resistance, while eIF4E-2 is differentially expressed between the tested varieties. RNA-seq and quantitative reverse transcriptase-polymerase chain reaction experiments demonstrated that eIF4E-2 expression level is positively correlated with resistance durability. These results suggest that besides the nature of the mutation affecting eIF4E-1, three factors linked with a complex locus may potentially impact va durability: loss of an integral eIF4E-3, presence of eIF4E-2-3 and overexpression of eIF4E-2. This latter gene might act as a decoy in a non-productive virus-plant interaction, limiting the ability of PVY to evolve towards resistance breaking. Taken together, these results show that va resistance durability can in large part be explained by complex redundancy effects in the eIF4E gene family.


Asunto(s)
Resistencia a la Enfermedad , Factor 4E Eucariótico de Iniciación/genética , Genes de Plantas , Sitios Genéticos , Nicotiana/inmunología , Nicotiana/virología , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Sustitución de Aminoácidos/genética , Cromosomas de las Plantas/genética , Ecotipo , Dosificación de Gen , Regulación de la Expresión Génica de las Plantas , Genotipo , Modelos Biológicos , Mutación/genética , Fenotipo , Filogenia , Enfermedades de las Plantas/genética , Eliminación de Secuencia , Nicotiana/genética
16.
Annu Rev Phytopathol ; 57: 63-90, 2019 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-31082307

RESUMEN

Strategies to manage plant disease-from use of resistant varieties to crop rotation, elimination of reservoirs, landscape planning, surveillance, quarantine, risk modeling, and anticipation of disease emergences-all rely on knowledge of pathogen host range. However, awareness of the multitude of factors that influence the outcome of plant-microorganism interactions, the spatial and temporal dynamics of these factors, and the diversity of any given pathogen makes it increasingly challenging to define simple, all-purpose rules to circumscribe the host range of a pathogen. For bacteria, fungi, oomycetes, and viruses, we illustrate that host range is often an overlapping continuum-more so than the separation of discrete pathotypes-and that host jumps are common. By setting the mechanisms of plant-pathogen interactions into the scales of contemporary land use and Earth history, we propose a framework to assess the frontiers of host range for practical applications and research on pathogen evolution.


Asunto(s)
Especificidad del Huésped , Oomicetos , Hongos , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Plantas
17.
Int J Mol Sci ; 19(10)2018 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-30241370

RESUMEN

In view of major economic problems caused by viruses, the development of genetically resistant crops is critical for breeders but remains limited by the evolution of resistance-breaking virus mutants. During the plant breeding process, the introgression of traits from Crop Wild Relatives results in a dramatic change of the genetic background that can alter the resistance efficiency or durability. Here, we conducted a meta-analysis on 19 Quantitative Trait Locus (QTL) studies of resistance to viruses in plants. Frequent epistatic effects between resistance genes indicate that a large part of the resistance phenotype, conferred by a given QTL, depends on the genetic background. We next reviewed the different resistance mechanisms in plants to survey at which stage the genetic background could impact resistance or durability. We propose that the genetic background may impair effector-triggered dominant resistances at several stages by tinkering the NB-LRR (Nucleotide Binding-Leucine-Rich Repeats) response pathway. In contrast, effects on recessive resistances by loss-of-susceptibility-such as eIF4E-based resistances-are more likely to rely on gene redundancy among the multigene family of host susceptibility factors. Finally, we show how the genetic background is likely to shape the evolution of resistance-breaking isolates and propose how to take this into account in order to breed plants with increased resistance durability to viruses.


Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Virus de Plantas , Plantas/genética , Epistasis Genética , Plantas/inmunología , Plantas/virología , Plantas Modificadas Genéticamente , Sitios de Carácter Cuantitativo
18.
Mol Plant Pathol ; 19(12): 2575-2589, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30074299

RESUMEN

The efficiency of plant major resistance genes is limited by the emergence and spread of resistance-breaking mutants. Modulation of the evolutionary forces acting on pathogen populations constitutes a promising way to increase the durability of these genes. We studied the effect of four plant traits affecting these evolutionary forces on the rate of resistance breakdown (RB) by a virus. Two of these traits correspond to virus effective population sizes (Ne ) at either plant inoculation or during infection. The third trait corresponds to differential selection exerted by the plant on the virus population. Finally, the fourth trait corresponds to within-plant virus accumulation (VA). These traits were measured experimentally on Potato virus Y (PVY) inoculated to a set of 84 pepper doubled-haploid lines, all carrying the same pvr23 resistance gene, but having contrasting genetic backgrounds. The lines showed extensive variation for the rate of pvr23 RB by PVY and for the four other traits of interest. A generalized linear model showed that three of these four traits, with the exception of Ne at inoculation, and several pairwise interactions between them had significant effects on RB. RB increased with increasing values of Ne during plant infection or VA. The effect of differential selection was more complex because of a strong interaction with VA. When VA was high, RB increased as the differential selection increased. An opposite relationship between RB and differential selection was observed when VA was low. This study provides a framework to select plants with appropriate virus evolution-related traits to avoid or delay RB.


Asunto(s)
Adaptación Fisiológica/genética , Flujo Genético , Interacciones Huésped-Patógeno/genética , Potyvirus/genética , Potyvirus/fisiología , Selección Genética , Evolución Biológica , Capsicum/genética , Resistencia a la Enfermedad , Haploidia , Modelos Lineales , Modelos Genéticos , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/virología , Potyvirus/crecimiento & desarrollo
19.
Plant J ; 2018 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-29863810

RESUMEN

Potato virus Y (PVY) is one of the most damaging viruses of tobacco. In particular, aggressive necrotic strains (PVYN ) lead to considerable losses in yield. The main source of resistance against PVY is linked to the va locus. However, va-overcoming PVY isolates inducing necrotic symptoms were observed in several countries. In this context, it is important to find va-independent protection strategies. In a previous study, the phenotyping of 162 tobacco varieties revealed 10 accessions that do not carry the va allele and do not exhibit typical PVYN -induced veinal necrosis. Despite the absence of necrotic symptoms, normal viral accumulation in these plants suggests a va-independent mechanism of tolerance to PVYN -induced systemic veinal necrosis. Fine mapping of the genetic determinant(s) was performed in a segregating F2 population. The tolerance trait is inherited as a single recessive gene, and allelism tests demonstrated that eight of the 10 tolerant varieties carry the same determinant. Anchoring the linkage map to the tobacco genome physical map allowed the identification of a RPP8-like R gene, called NtTPN1 (for Nicotiana tabacum Tolerance to PVY-induced Necrosis1), with the same single-nucleotide polymorphism in the eight tolerant accessions. Functional assays using homozygous NtTPN1 EMS mutants confirmed the role of NtTPN1 in the tolerance phenotype. PVYN -induced systemic veinal necrosis in tobacco likely represents an inefficient defense response with hypersensitive response-like characteristics. The identification of NtTPN1 opens breeding options to minimize the impact of emerging and so far uncontrolled va-breaking necrotic PVY isolates.

20.
Mol Biol Evol ; 35(1): 38-49, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29029259

RESUMEN

Intrinsic disorder (ID) in proteins is defined as a lack of stable structure in physiological conditions. Intrinsically disordered regions (IDRs) are highly abundant in some RNA virus proteomes. Low topological constraints exerted on IDRs are expected to buffer the effect of numerous deleterious mutations and could be related to the remarkable adaptive potential of RNA viruses to overcome resistance of their host. To experimentally test this hypothesis in a natural pathosystem, a set of four variants of Potato virus Y (PVY; Potyvirus genus) containing various ID degrees in the Viral genome-linked (VPg) protein, a key determinant of potyvirus adaptation, was designed. To estimate the ID contribution to the VPg-based PVY adaptation, the adaptive ability of the four PVY variants was monitored in the pepper host (Capsicum annuum) carrying a recessive resistance gene. Intriguingly, the two mutants with the highest ID content displayed a significantly higher ability to restore infection in the resistant host, whereas the less intrinsically disordered mutant was unable to restore infection. The role of ID on virus adaptation may be due either to a larger exploration of evolutionary pathways or the minimization of fitness penalty caused by resistance-breaking mutations. This pioneering study strongly suggests the positive impact of ID in an RNA virus adaptive capacity.


Asunto(s)
Adaptación Fisiológica/genética , Potyvirus/genética , Ribonucleoproteínas/genética , Proteínas no Estructurales Virales/genética , Aclimatación/genética , Evolución Biológica , Capsicum/virología , Evolución Molecular , Genoma Viral , Mutación/genética , Proyectos Piloto , Estabilidad Proteica , Proteoma , ARN/genética , Ribonucleoproteínas/fisiología , Proteínas no Estructurales Virales/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...