Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Lett ; 651: 226-231, 2017 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-28501696

RESUMEN

A plant alkaloid obtained from Curcuma longa, curcumin possesses anti-oxidant and anti-inflammatory effects. Nanoformulations have been developed for preclinical studies which demonstrate enhanced therapeutic efficacy. Effect of acute intraperitoneal (i.p.) administration of curcumin C3 complex nanoparticles [1,5, 10, 20, 40, 80mg/kg, (i.p.)] 75min prior to PTZ, on clonic seizure thresholds induced by intravenous infusion of pentylenetetrazole (PTZ) 0.5% was investigated in comparison with curcumin (40 and 80mg/kg, i.p.) in male mice. Moreover, to clarify the probable role of NO in the anticonvulsant property of nanocurcumin, non-effective doses of l-arginine (l-Arg), a NO donor; 7-nitroindazole, 7-NI, a preferential neuronal NO synthase inhibitor; L-NAME, a non-selective NO synthase inhibitor and aminoguanidine (AG), a selective inducible NO synthase inhibitor (iNOS), in combination with nanocurcumin (80mg/kg, i.p.), 15-30min before it were employed. RESULTS: While curcumin did not show any anticonvulsant effect, nanocurcumin revealed dose-dependent anticonvulsant property at the doses 20, 40 and 80mg/kg, P<0.01, P<0.01 and P<0.001, respectively. l-Arg (30 and 60mg/kg) dose-dependently reversed the anticonvulsant effect of the most effective nanocurcumin dose (80mg/kg), P<0.01 and P<0.001, respectively. On the other hand, L-NAME (3 and 10mg/kg, i.p.) markedly potentiated the sub effective dose of nanocurcumin (10mg/kg), P<0.01 and P<0.001, respectively. Similarly, AG (50 and 100mg/kg, i.p.) profoundly augmented the seizure thresholds of nanocurcumin (10mg/kg), P<0.01 and P<0.001, respectively. In addition, 7-NI (10, 30 and 60mg/kg, i.p.) failed to influence the responses. CONCLUSION: These data may support excess of NO production following PTZ infusion probably resulting from iNOS source. Consequently, nanocurcumin probably down regulated NO. To conclude, nanocurcumin showed anticonvulsant effect. Furthermore, this effect was reversed following l-arginine as an external NO precursor. However, both the non-selective NOS inhibitor and selective iNOS inhibitor increased the thresholds. It is evident that nanocurcumin may influence the seizure thresholds at least in part through a decrease in NO.


Asunto(s)
Anticonvulsivantes/administración & dosificación , Curcumina/administración & dosificación , Óxido Nítrico/metabolismo , Convulsiones/tratamiento farmacológico , Convulsiones/metabolismo , Animales , Convulsivantes/administración & dosificación , Relación Dosis-Respuesta a Droga , Indazoles/administración & dosificación , Masculino , Ratones , Nanopartículas , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Pentilenotetrazol/administración & dosificación , Convulsiones/inducido químicamente
2.
J Arthropod Borne Dis ; 6(2): 136-43, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23378971

RESUMEN

BACKGROUND: Diabetes is an important disease. This disease is a metabolic disorder characterized by hyperglycemia resulting from perturbation in insulin secretion, insulin action or both. Honey bee venom contains a wide range of polypeptide agents. The principle components of bee venom are mellitin and phospholipase A(2). These components increase insulin secretion from the ß-cells of pancreas. This study was conducted to show the hypoglycemic effect of honey bee venom on alloxan induced diabetic male rats. METHODS: Eighteen adult male rats weighting 200±20 g were placed into 3 randomly groups: control, alloxan monohydrate-induced diabetic rat and treated group that received honey bee venom daily before their nutrition for four months. Forty eight hours after the last injection, blood was collected from their heart, serum was dissented and blood glucose, insulin, triglyceride and total cholesterol were determined. RESULTS: Glucose serum, triglyceride and total cholesterol level in treated group in comparison with diabetic group was significantly decreased (P< 0.01). On the other hand, using bee venom causes increase in insulin serum in comparison with diabetic group (P< 0.05). CONCLUSION: Honeybee venom (apitoxin) can be used as therapeutic option to lower blood glucose and lipids in diabetic rats.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA