Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 624(7992): 645-652, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38093014

RESUMEN

People with diabetes feature a life-risking susceptibility to respiratory viral infection, including influenza and SARS-CoV-2 (ref. 1), whose mechanism remains unknown. In acquired and genetic mouse models of diabetes, induced with an acute pulmonary viral infection, we demonstrate that hyperglycaemia leads to impaired costimulatory molecule expression, antigen transport and T cell priming in distinct lung dendritic cell (DC) subsets, driving a defective antiviral adaptive immune response, delayed viral clearance and enhanced mortality. Mechanistically, hyperglycaemia induces an altered metabolic DC circuitry characterized by increased glucose-to-acetyl-CoA shunting and downstream histone acetylation, leading to global chromatin alterations. These, in turn, drive impaired expression of key DC effectors including central antigen presentation-related genes. Either glucose-lowering treatment or pharmacological modulation of histone acetylation rescues DC function and antiviral immunity. Collectively, we highlight a hyperglycaemia-driven metabolic-immune axis orchestrating DC dysfunction during pulmonary viral infection and identify metabolic checkpoints that may be therapeutically exploited in mitigating exacerbated disease in infected diabetics.


Asunto(s)
Células Dendríticas , Complicaciones de la Diabetes , Diabetes Mellitus , Susceptibilidad a Enfermedades , Hiperglucemia , Pulmón , Virosis , Animales , Ratones , Acetilcoenzima A/metabolismo , Acetilación , Cromatina/genética , Cromatina/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Células Dendríticas/patología , Complicaciones de la Diabetes/inmunología , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus/genética , Diabetes Mellitus/inmunología , Diabetes Mellitus/metabolismo , Glucosa/metabolismo , Histonas/metabolismo , Hiperglucemia/complicaciones , Hiperglucemia/inmunología , Hiperglucemia/metabolismo , Pulmón/inmunología , Pulmón/metabolismo , Pulmón/virología , Linfocitos T/inmunología , Virosis/complicaciones , Virosis/inmunología , Virosis/mortalidad , Virus/inmunología , Modelos Animales de Enfermedad , Humanos
2.
Cell Death Dis ; 13(12): 1027, 2022 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-36477438

RESUMEN

Stem cells are defined by their ability to self-renew and differentiate, both shown in multiple studies to be regulated by metabolic processes. To decipher metabolic signatures of self-renewal in blastocyst-derived stem cells, we compared early differentiating embryonic stem cells (ESCs) and their extra-embryonic counterparts, trophoblast (T)SCs to their self-renewing counterparts. A metabolomics analysis pointed to the desaturation of fatty acyl chains as a metabolic signature of differentiating blastocyst-derived SCs via the upregulation of delta-6 desaturase (D6D; FADS2) and delta-5 desaturase (D5D; FADS1), key enzymes in the biosynthesis of polyunsaturated fatty acids (PUFAs). The inhibition of D6D or D5D by specific inhibitors or SiRNA retained stemness in ESCs and TSCs, and attenuated endoplasmic reticulum (ER) stress-related apoptosis. D6D inhibition in ESCs upregulated stearoyl-CoA desaturase-1 (Scd1), essential to maintain ER homeostasis. In TSCs, however, D6D inhibition downregulated Scd1. TSCs show higher Scd1 mRNA expression and high levels of monounsaturated fatty acyl chain products in comparison to ESCs. The addition of oleic acid, the product of Scd1 (essential for ESCs), to culture medium, was detrimental to TSCs. Interestingly, TSCs express a high molecular mass variant of Scd1 protein, hardly expressed by ESCs. Taken together, our data suggest that lipid desaturation is a metabolic regulator of the balance between differentiation and self-renewal of ESCs and TSCs. They point to lipid polydesaturation as a driver of differentiation in both cell types. Monounsaturated fatty acids (MUFAs), essential for ESCs are detrimental to TSCs.


Asunto(s)
Metabolómica , Células Madre , Animales , Ratones , Diferenciación Celular , Lípidos
3.
iScience ; 25(10): 105242, 2022 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-36274945

RESUMEN

Bacterial spores can preserve cellular dormancy for years, but still hold the remarkable ability to revive and recommence life. This cellular awakening begins with a rapid and irreversible event termed germination; however, the metabolic determinants required for its success have been hardly explored. Here, we show that at the onset of the process of sporulation, the metabolic enzyme RocG catabolizes glutamate, facilitating ATP production in the spore progenitor cell, and subsequently influencing the eventual spore ATP reservoir. Mutants displaying low RocG levels generate low ATP-containing spores that exhibit severe germination deficiency. Importantly, this phenotype could be complemented by expressing RocG at a specific window of time during the initiation of sporulation. Thus, we propose that despite its low abundance in dormant spores, ATP energizes spore germination, and its production, fueled by RocG, is coupled with the initial developmental phase of spore formation.

4.
mSystems ; 7(3): e0020222, 2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35477304

RESUMEN

The cell envelope of Gram-negative bacteria is a complex structure, essential for bacterial survival and for resistance to many antibiotics. Channels that cross the bacterial envelope and the host cell membrane form secretion systems that are activated upon attachment to host, enabling bacteria to inject effector molecules into the host cell, required for bacterium-host interaction. The type III secretion system (T3SS) is critical for the virulence of several pathogenic bacteria, including enteropathogenic Escherichia coli (EPEC). EPEC T3SS activation is associated with repression of carbon storage regulator (CsrA), resulting in gene expression remodeling, which is known to affect EPEC central carbon metabolism and contributes to the adaptation to a cell-adherent lifestyle in a poorly understood manner. We reasoned that the changes in the bacterial envelope upon attachment to the host and the activation of a secretion system may involve a modification of the lipid composition of bacterial envelope. Accordingly, we performed a lipidomics analysis on mutant strains that simulate T3SS activation. We saw a shift in glycerophospholipid metabolism toward the formation of lysophospholipids, attributed to corresponding upregulation of the phospholipase gene pldA and the acyltransferase gene ygiH upon T3SS activation in EPEC. We also detected a shift from menaquinones and ubiquinones to undecaprenyl lipids, concomitant with abnormal synthesis of O antigen. The remodeling of lipid metabolism is mediated by CsrA and associated with increased bacterial cell size and zeta potential and a corresponding alteration in EPEC permeability to vancomycin, increasing the sensitivity of T3SS-activated strains and of adherent wild-type EPEC to the antibiotic. IMPORTANCE The characterization of EPEC membrane lipid metabolism upon attachment to the host is an important step toward a better understanding the shift of EPEC, a notable human pathogen, from a planktonic to adherent lifestyle. It may also apply to other pathogenic bacteria that use this secretion system. We predict that upon attachment to host cells, the lipid remodeling upon T3SS activation contributes to bacterial fitness and promotes host colonization, and we show that it is associated with increased cell permeability and higher sensitivity to vancomycin. To the best of our knowledge, this is the first demonstration of a bacterial lipid remodeling due to activation of a secretion system.


Asunto(s)
Escherichia coli Enteropatógena , Proteínas de Escherichia coli , Humanos , Escherichia coli Enteropatógena/genética , Sistemas de Secreción Tipo III/genética , Vancomicina/metabolismo , Proteínas de Escherichia coli/genética , Lípidos , Proteínas Represoras/metabolismo , Proteínas de Unión al ARN/metabolismo
5.
Am J Clin Nutr ; 112(4): 979-990, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766878

RESUMEN

BACKGROUND: Adipose tissue plays important roles in health and disease. Given the unique association of visceral adipose tissue with obesity-related metabolic diseases, the distribution of lipids between the major fat depots located in subcutaneous and visceral regions may shed new light on adipose tissue-specific roles in systemic metabolic perturbations. OBJECTIVE: We sought to characterize the lipid networks and unveil differences in the metabolic infrastructure of the 2 adipose tissues that may have functional and nutritional implications. METHODS: Paired visceral and subcutaneous adipose tissue samples were obtained from 17 overweight patients undergoing elective abdominal surgery. Ultra-performance LC-MS was used to measure 18,640 adipose-derived features; 520 were putatively identified. A stem cell model for adipogenesis was used to study the functional implications of the differences found. RESULTS: Our analyses resulted in detailed lipid metabolic maps of the 2 major adipose tissues. They point to a higher accumulation of phosphatidylcholines, triacylglycerols, and diacylglycerols, although lower ceramide concentrations, in subcutaneous tissue. The degree of unsaturation was lower in visceral adipose tissue (VAT) phospholipids, indicating lower unsaturated fatty acid incorporation into adipose tissue. The differential abundance of phosphatidylcholines we found can be attributed at least partially to higher expression of phosphatidylethanolamine methyl transferase (PEMT). PEMT-deficient embryonic stem cells showed a dramatic decrease in adipogenesis, and the resulting adipocytes exhibited lower accumulation of lipid droplets, in line with the lower concentrations of glycerolipids in VAT. Ceramides may inhibit the expression of PEMT by increased insulin resistance, thus potentially suggesting a functional pathway that integrates ceramide, PEMT, and glycerolipid biosynthetic pathways. CONCLUSIONS: Our work unveils differential infrastructure of the lipid networks in visceral and subcutaneous adipose tissues and suggests an integrative pathway, with a discriminative flux between adipose tissues.


Asunto(s)
Grasa Intraabdominal/metabolismo , Metabolismo de los Lípidos , Sobrepeso/metabolismo , Grasa Subcutánea/metabolismo , Adulto , Animales , Femenino , Glicerofosfolípidos/metabolismo , Humanos , Masculino , Ratones , Persona de Mediana Edad , Triglicéridos/metabolismo
6.
Biomolecules ; 10(8)2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32752038

RESUMEN

Follicular fluid (FF) constitutes the microenvironment of the developing oocyte. We recently characterized its lipid composition and found lipid signatures of positive pregnancy outcome after in vitro fertilization (IVF). In the current study, we aimed to test the hypothesis that unexplained female infertility is related to lipid metabolism, given the lipid signature of positive-outcome IVF patients we previously found. Assuming that FF samples from IVF patients with male factor infertility can represent a non-hindered metabolic microenvironment, we compared them to FF taken from women with unexplained infertility. FF from patients undergoing IVF was examined for its lipid composition. We found highly increased triacylglycerol levels, with a lower abundance of monoacylglycerols, phospholipids and sphingolipids in the FF of patients with unexplained infertility. The alterations in the lipid class accumulation were independent of the body mass index (BMI) and were altogether kept across the age groups. Potential lipid biomarkers for pregnancy outcomes showed a highly discriminative abundance in the FF of unexplained infertility patients. Lipid abundance distinguished IVF patients with unrecognized infertility and provided a potential means for the evaluation of female fertility.


Asunto(s)
Líquido Folicular/metabolismo , Glicéridos/metabolismo , Infertilidad Femenina/metabolismo , Adulto , Femenino , Fertilización In Vitro , Humanos , Infertilidad Femenina/terapia , Masculino , Fosfolípidos/metabolismo , Esfingolípidos/metabolismo
7.
Sci Rep ; 10(1): 1622, 2020 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-32005897

RESUMEN

Stem cells, poised to revolutionize current medicine, stand as major workhorses for monitoring changes in cell fate. Characterizing metabolic phenotypes is key to monitor in differentiating cells transcriptional and epigenetic shifts at a functional level and provides a non-genetic means to control cell specification. Expanding the arsenal of analytical tools for metabolic profiling of cell differentiation is therefore of importance. Here, we describe the metabolome of whole pluripotent stem cells (PSCs) using high-resolution magic angle spinning (HR-MAS), a non-destructive approach for Nuclear Magnetic Resonance (NMR) analysis. The integrated 1H NMR analysis results in detection of metabolites of various groups, including energy metabolites, amino acids, choline derivatives and short chain fatty acids. It unveils new metabolites that discriminate PSCs from differentiated counterparts and directly measures substrates and co-factors of histone modifying enzymes, suggesting that NMR stands as a strategic technique for deciphering metabolic regulations of histone post-translational modifications. HR-MAS NMR analysis of whole PSCs complements the much used solution NMR of cell extracts. Altogether, our multi-platform NMR investigation provides a consolidated picture of PSC metabolic signatures and of metabolic pathways involved in differentiation.


Asunto(s)
Diferenciación Celular/fisiología , Redes y Vías Metabólicas/fisiología , Células Madre Pluripotentes/metabolismo , Aminoácidos/metabolismo , Animales , Línea Celular , Espectroscopía de Resonancia Magnética/métodos , Metaboloma/fisiología , Metabolómica/métodos , Ratones , Células 3T3 NIH , Espectroscopía de Protones por Resonancia Magnética/métodos
8.
FASEB J ; 33(9): 10291-10299, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31219705

RESUMEN

Follicular fluid (FF) is a liquid that surrounds the ovum. Its metabolite and, specifically, its lipid content have been associated with oocyte development. To characterize possible association between the lipid composition of FF and the outcome of pregnancy, we carried out a lipidomics study and compared the abundance of lipids from FF of patients with positive and negative outcomes. We found a differential lipid network wiring in positive-outcome FF, with a significant decrease (∼2 fold; P < 0.001) in triacylglycerol levels and higher accumulation (10-50%; P < 0.001) of membrane lipids groups (phospholipids and sphingolipids). In addition to this major metabolic alteration, other lipid groups such as cholesteryl esters showed lower levels in positive-outcome patients, whereas derivatives of vitamin D were highly accumulated in positive-outcome FF, supporting previous studies that associate vitamin D levels in FF to pregnancy outcome. Our data also point to specific lipid species with a differential accumulation pattern in positive-outcome FF that predicted pregnancy in a receiver operating characteristic analysis. Altogether, our results suggest that FF lipid network is associated with the oocyte development, with possible implications in diagnostics and treatment.-Shehadeh, A., Bruck-Haimson, R., Saidemberg, D., Zacharia. A., Herzberg, S., Ben-Meir, A., Moussaieff, A. A shift in follicular fluid from triacylglycerols to membrane lipids is associated with positive pregnancy outcome.


Asunto(s)
Líquido Folicular/metabolismo , Lípidos de la Membrana/metabolismo , Oocitos/metabolismo , Triglicéridos/metabolismo , Adulto , Femenino , Fertilización In Vitro , Humanos , Oocitos/citología , Embarazo , Resultado del Embarazo
9.
EMBO J ; 34(11): 1538-53, 2015 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-25916830

RESUMEN

Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns.


Asunto(s)
Relojes Circadianos/fisiología , Proteínas de Drosophila/metabolismo , Metabolismo Energético/fisiología , Conducta Alimentaria/fisiología , Glucosa/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/fisiología , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster , Glucosa/genética , Glicerol/metabolismo , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Factores de Transcripción/genética
10.
Stem Cells ; 33(8): 2374-80, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25873344

RESUMEN

Recent studies suggest that the metabolic network is an important part of the molecular circuitry that underlies pluripotency. Of the metabolic pathways that were implicated in the pluripotency balance, "energy" metabolism is particularly notable. Its mechanism of action on pluripotency-regulating genes has been partially elucidated when three metabolites, namely acetate, S-adenosylmethionine, and O-linked ß-N-acetylglucosamine were recently shown to link cytosolic signals to pluripotent gene expression. The cytosolic levels of these metabolites are the result of environmental perturbations, making them sensitive messengers, which are assumed to diffuse through the nuclear pores, being small molecules. Recent work also suggests that the modulation of the levels of these metabolites in pluripotent cells controls the balance between pluripotency and early commitment via epigenetic modifications. Here, we review recent studies that link metabolism and pluripotency via epigenetic modifications that occur through these three metabolites.


Asunto(s)
Metabolismo Energético/fisiología , Epigénesis Genética/fisiología , Células Madre Pluripotentes/metabolismo , Acetatos/metabolismo , Acetilglucosamina/metabolismo , Animales , Humanos , Células Madre Pluripotentes/citología , S-Adenosilmetionina/metabolismo
11.
Hepatology ; 62(1): 265-78, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25808545

RESUMEN

UNLABELLED: The liver is the main organ responsible for the modification, clearance, and transformational toxicity of most xenobiotics owing to its abundance in cytochrome P450 (CYP450) enzymes. However, the scarcity and variability of primary hepatocytes currently limits their utility. Human pluripotent stem cells (hPSCs) represent an excellent source of differentiated hepatocytes; however, current protocols still produce fetal-like hepatocytes with limited mature function. Interestingly, fetal hepatocytes acquire mature CYP450 expression only postpartum, suggesting that nutritional cues may drive hepatic maturation. We show that vitamin K2 and lithocholic acid, a by-product of intestinal flora, activate pregnane X receptor (PXR) and subsequent CYP3A4 and CYP2C9 expression in hPSC-derived and isolated fetal hepatocytes. Differentiated cells produce albumin and apolipoprotein B100 at levels equivalent to primary human hepatocytes, while demonstrating an 8-fold induction of CYP450 activity in response to aryl hydrocarbon receptor (AhR) agonist omeprazole and a 10-fold induction in response to PXR agonist rifampicin. Flow cytometry showed that over 83% of cells were albumin and hepatocyte nuclear factor 4 alpha (HNF4α) positive, permitting high-content screening in a 96-well plate format. Analysis of 12 compounds showed an R(2) correlation of 0.94 between TC50 values obtained in stem cell-derived hepatocytes and primary cells, compared to 0.62 for HepG2 cells. Finally, stem cell-derived hepatocytes demonstrate all toxicological endpoints examined, including steatosis, apoptosis, and cholestasis, when exposed to nine known hepatotoxins. CONCLUSION: Our work provides fresh insights into liver development, suggesting that microbial-derived cues may drive the maturation of CYP450 enzymes postpartum. Addition of these cues results in the first functional, inducible, hPSC-derived hepatocyte for predictive toxicology.


Asunto(s)
Técnicas de Cultivo de Célula , Hepatocitos/citología , Ácido Litocólico/farmacología , Células Madre Pluripotentes/efectos de los fármacos , Vitamina K 2/farmacología , Diferenciación Celular , Células Cultivadas , Citocromo P-450 CYP2C9/metabolismo , Citocromo P-450 CYP3A/metabolismo , Células Madre Embrionarias/efectos de los fármacos , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Humanos , Receptor X de Pregnano , Receptores de Esteroides/metabolismo , Análisis de Secuencia de ARN , Pruebas de Toxicidad Aguda , Vitamina K 2/análogos & derivados
12.
Cell Metab ; 21(3): 392-402, 2015 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-25738455

RESUMEN

Loss of pluripotency is a gradual event whose initiating factors are largely unknown. Here we report the earliest metabolic changes induced during the first hours of differentiation. High-resolution NMR identified 44 metabolites and a distinct metabolic transition occurring during early differentiation. Metabolic and transcriptional analyses showed that pluripotent cells produced acetyl-CoA through glycolysis and rapidly lost this function during differentiation. Importantly, modulation of glycolysis blocked histone deacetylation and differentiation in human and mouse embryonic stem cells. Acetate, a precursor of acetyl-CoA, delayed differentiation and blocked early histone deacetylation in a dose-dependent manner. Inhibitors upstream of acetyl-CoA caused differentiation of pluripotent cells, while those downstream delayed differentiation. Our results show a metabolic switch causing a loss of histone acetylation and pluripotent state during the first hours of differentiation. Our data highlight the important role metabolism plays in pluripotency and suggest that a glycolytic switch controlling histone acetylation can release stem cells from pluripotency.


Asunto(s)
Acetilcoenzima A/metabolismo , Diferenciación Celular/fisiología , Células Madre Embrionarias/metabolismo , Células Madre Embrionarias/fisiología , Glucólisis/fisiología , Histonas/metabolismo , Acetilcoenzima A/genética , Acetilación , Animales , Diferenciación Celular/genética , Línea Celular , Glucólisis/genética , Histonas/genética , Humanos , Ratones , Transcripción Genética/genética , Transcripción Genética/fisiología
13.
Proc Natl Acad Sci U S A ; 110(13): E1232-41, 2013 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-23476065

RESUMEN

Metabolite composition offers a powerful tool for understanding gene function and regulatory processes. However, metabolomics studies on multicellular organisms have thus far been performed primarily on whole organisms, organs, or cell lines, losing information about individual cell types within a tissue. With the goal of profiling metabolite content in different cell populations within an organ, we used FACS to dissect GFP-marked cells from Arabidopsis roots for metabolomics analysis. Here, we present the metabolic profiles obtained from five GFP-tagged lines representing core cell types in the root. Fifty metabolites were putatively identified, with the most prominent groups being glucosinolates, phenylpropanoids, and dipeptides, the latter of which is not yet explored in roots. The mRNA expression of enzymes or regulators in the corresponding biosynthetic pathways was compared with the relative metabolite abundance. Positive correlations suggest that the rate-limiting steps in biosynthesis of glucosinolates in the root are oxidative modifications of side chains. The current study presents a work flow for metabolomics analyses of cell-type populations.


Asunto(s)
Arabidopsis/citología , Arabidopsis/metabolismo , Metaboloma/fisiología , Raíces de Plantas/citología , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas Modificadas Genéticamente/citología , Plantas Modificadas Genéticamente/metabolismo , ARN Mensajero/biosíntesis , ARN de Planta/biosíntesis
14.
J Psychopharmacol ; 26(12): 1584-93, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23015543

RESUMEN

Incensole acetate (IA), a constituent of Boswellia resin ('frankincense'), was previously demonstrated to exhibit an antidepressive-like effect in the Forced Swim Test (FST) in mice following single dose administration (50 mg/kg). Here, we show that acute administration of considerably lower dose (10 mg/kg) IA to selectively bred mice, showing prominent submissive behavior, exerted significant antidepressant-like effects in the FST. Furthermore, chronic administration of 1 or 5 mg/kg per day of IA for three consecutive weeks dose- and time-dependently reduced the submissiveness of the mice in the Dominant-Submissive Relationship test, developed to screen the chronic effect of antidepressants. This behavioral effect was concomitant to reduced serum corticosterone levels, dose-dependent down-regulation of corticotropin releasing factor and up-regulation of brain derived neurotrophic factor transcripts IV and VI expression in the hippocampus. These data suggest that IA modulates the hypothalamic-pituitary-adrenal (HPA) axis and influences hippocampal gene expression, leading to beneficial behavioral effects supporting its potential as a novel treatment of depressive-like disorders.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Depresión/tratamiento farmacológico , Diterpenos/farmacología , Animales , Antidepresivos/administración & dosificación , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hormona Liberadora de Corticotropina/genética , Modelos Animales de Enfermedad , Diterpenos/administración & dosificación , Dominación-Subordinación , Relación Dosis-Respuesta a Droga , Regulación hacia Abajo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Masculino , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Natación , Factores de Tiempo , Regulación hacia Arriba/efectos de los fármacos
15.
Plant J ; 70(1): 5-17, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22449039

RESUMEN

Plant development and survival is centered on complex regulatory networks composed of genes, proteins, hormone pathways, metabolites and signaling pathways. The recent advancements in whole genome biology have furthered our understanding of the interactions between these networks. As a result, numerous cell type-specific transcriptome profiles have been generated that have elucidated complex gene regulatory networks occurring at the cellular level, many of which were masked during whole-organ analysis. Modern technologies have also allowed researchers to generate multiple whole-organ metabolite profiles; however, only a limited number have been generated at the level of individual cells. Recent advancements in the isolation of individual cell populations have made cell type-specific metabolite profiles possible, enabling the enhanced detection and quantification of metabolites that were formerly unavailable when considering the whole organ. The comparison of metabolite and transcriptome profiles from the same cells has been a valuable resource to generate predictions regarding specific metabolite activity and function. In this review, we focus on recent studies that demonstrate the value of cell type-specific transcriptional profiles and their comparison with profiles generated from whole organs. Advancements in the isolation of single-cell populations will be highlighted, and the potential application towards generating detailed metabolic profiles will be discussed.


Asunto(s)
Perfilación de la Expresión Génica , Metabolómica , Plantas/genética , Plantas/metabolismo , Citometría de Flujo , Redes Reguladoras de Genes , Captura por Microdisección con Láser , Meristema/citología , Meristema/genética , Meristema/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Brotes de la Planta/citología , Brotes de la Planta/genética , Brotes de la Planta/metabolismo
16.
Brain Res ; 1443: 89-97, 2012 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-22284622

RESUMEN

The resin of Boswellia species is a major anti-inflammatory agent that has been used for centuries to treat various conditions including injuries and inflammatory conditions. Incensole acetate (IA), a major constituent of this resin, has been shown to inhibit NF-κB activation and concomitant inflammation, as well as the neurological deficit following head trauma. Here, we show that IA protects against ischemic neuronal damage and reperfusion injury in mice, attenuating the inflammatory nature of ischemic damage. IA given post-ischemia, reduced infarct volumes and improved neurological activities in the mouse model of ischemic injury in a dose dependent fashion. The protection from damage was accompanied by inhibition of TNF-α, IL-1ß and TGF-ß expression, as well as NF-κB activation following injury. In addition, IA is shown to have a therapeutic window of treatment up to 6h after ischemic injury. Finally, the protective effects of IA were partially mediated by TRPV3 channels as determined by the TRPV3 deficient mice and channel blocker studies. This study suggests that the anti-inflammatory and neuroprotective activities of IA may serve as a novel therapeutic treatment for ischemic and reperfusion injury, and as a tool in the ongoing research of mechanisms for neurological damage.


Asunto(s)
Antiinflamatorios/administración & dosificación , Lesiones Encefálicas/tratamiento farmacológico , Diterpenos/administración & dosificación , Fármacos Neuroprotectores/administración & dosificación , Animales , Lesiones Encefálicas/metabolismo , Isquemia Encefálica , Ratones , FN-kappa B/metabolismo
17.
Anal Chem ; 82(22): 9177-87, 2010 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-20977194

RESUMEN

The output of LC-MS metabolomics experiments consists of mass-peak intensities identified through a peak-picking/alignment procedure. Besides imperfections in biological samples and instrumentation, data accuracy is highly dependent on the applied algorithms and their parameters. Consequently, quality control (QC) is essential for further data analysis. Here, we present a QC approach that is based on discrepancies between replicate samples. First, the quantile normalization of per-sample log-signal distributions is applied to each group of biologically homogeneous samples. Next, the overall quality of each replicate group is characterized by the Z-transformed correlation coefficients between samples. This general QC allows a tuning of the procedure's parameters which minimizes the inter-replicate discrepancies in the generated output. Subsequently, an in-depth QC measure detects local neighborhoods on a template of aligned chromatograms that are enriched by divergences between intensity profiles of replicate samples. These neighborhoods are determined through a segmentation algorithm. The retention time (RT)-m/z positions of the neighborhoods with local divergences are indicative of either: incorrect alignment of chromatographic features, technical problems in the chromatograms, or to a true biological discrepancy between replicates for particular metabolites. We expect this method to aid in the accurate analysis of metabolomics data and in the development of new peak-picking/alignment procedures.


Asunto(s)
Cromatografía Liquida/métodos , Espectrometría de Masas/métodos , Metabolómica/métodos , Estadística como Asunto/normas , Arabidopsis/metabolismo , Modelos Lineales , Control de Calidad , Programas Informáticos , Factores de Tiempo
18.
J Pharm Pharmacol ; 61(10): 1281-93, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19814859

RESUMEN

OBJECTIVES: Despite its historical-religious, cultural and medical importance, Boswellia has not been thoroughly studied, and gaps still exist between our knowledge of the traditional uses of the resin and the scientific data available. Here we review the pharmacology of Boswellia resin and of the small molecules identified as the active ingredients of the resin. KEY FINDINGS: The resin of Boswellia species ('frankincense', 'olibanum') has been used as incense in religious and cultural ceremonies since the beginning of written history. Its medicinal properties are also widely recognized, mainly in the treatment of inflammatory conditions, as well as in some cancerous diseases, wound healing and for its antimicrobial activity. Until recently, work on Boswellia focused on the immunomodulatory properties of the resin and boswellic acids were considered to be the main, if not the only, active ingredients of the resin. Hence, this family of triterpenoids was investigated by numerous groups, both in vitro and in vivo. These compounds were shown to exert significant anti-inflammatory and pro-apoptotic activity in many assays: in vitro, in vivo and in clinical trials. We recently found incensole acetate and its derivatives, which are major components of Boswellia resin, to be nuclear factor-kappaB inhibitors, thus suggesting that they are, at least in part, responsible for its anti-inflammatory effects. Incensole acetate also exerts a robust neuroprotective effect after brain trauma in mice. Furthermore, it causes behavioural as well as anti-depressive and anxiolytic effects in mice. It is also a potent agonist of the transient receptor potential (TRP)V3 channel. It thus seems that incensole acetate and its derivatives play a significant role in the effects that Boswellia resin exerts on biological systems. CONCLUSIONS: Altogether, studies on Boswellia resin have provided an arsenal of bio-active small molecules with a considerable therapeutic potential that is far from being utilized.


Asunto(s)
Boswellia/química , Diterpenos/farmacología , Resinas de Plantas/química , Resinas de Plantas/farmacología , Triterpenos/farmacología , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Apoptosis/efectos de los fármacos , Encéfalo/efectos de los fármacos , Ensayos Clínicos como Asunto , Citotoxinas/farmacología , Diterpenos/uso terapéutico , Evaluación Preclínica de Medicamentos , Humanos , Inmunomodulación/efectos de los fármacos , FN-kappa B/efectos de los fármacos , Triterpenos/química , Triterpenos/uso terapéutico
19.
FASEB J ; 22(8): 3024-34, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18492727

RESUMEN

Burning of Boswellia resin as incense has been part of religious and cultural ceremonies for millennia and is believed to contribute to the spiritual exaltation associated with such events. Transient receptor potential vanilloid (TRPV) 3 is an ion channel implicated in the perception of warmth in the skin. TRPV3 mRNA has also been found in neurons throughout the brain; however, the role of TRPV3 channels there remains unknown. Here we show that incensole acetate (IA), a Boswellia resin constituent, is a potent TRPV3 agonist that causes anxiolytic-like and antidepressive-like behavioral effects in wild-type (WT) mice with concomitant changes in c-Fos activation in the brain. These behavioral effects were not noted in TRPV3(-/-) mice, suggesting that they are mediated via TRPV3 channels. IA activated TRPV3 channels stably expressed in HEK293 cells and in keratinocytes from TRPV3(+/+) mice. It had no effect on keratinocytes from TRPV3(-/-) mice and showed modest or no effect on TRPV1, TRPV2, and TRPV4, as well as on 24 other receptors, ion channels, and transport proteins. Our results imply that TRPV3 channels in the brain may play a role in emotional regulation. Furthermore, the biochemical and pharmacological effects of IA may provide a biological basis for deeply rooted cultural and religious traditions.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Diterpenos/farmacología , Psicotrópicos/farmacología , Canales Catiónicos TRPV/agonistas , Animales , Ansiolíticos/aislamiento & purificación , Ansiolíticos/farmacología , Antidepresivos/aislamiento & purificación , Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Boswellia/química , Línea Celular , Diterpenos/aislamiento & purificación , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Plantas Medicinales/química , Proteínas Proto-Oncogénicas c-fos/metabolismo , Psicotrópicos/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Canales Catiónicos TRPV/deficiencia , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
20.
J Cereb Blood Flow Metab ; 28(7): 1341-52, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18414499

RESUMEN

Boswellia resin has been used as a major anti-inflammatory agent and for the healing of wounds for centuries. Incensole acetate (IA), isolated from this resin, was shown to inhibit the activation of nuclear factor-kappaB, a key transcription factor in the inflammatory response. We now show that IA inhibits the production of inflammatory mediators in an in vitro model system of C6 glioma and human peripheral monocytes. Given the involvement of postinjury inflammation in the pathophysiology and outcome of traumatic brain injury, we examined the effect of IA on the inflammatory process and on the recovery of neurobehavioral and cognitive functions in a mouse model of closed head injury (CHI). In the brains of post-CHI mice, IA reduced glial activation, inhibited the expression of interleukin-1beta, and tumor necrosis factor-alpha mRNAs, and induced cell death in macrophages at the area of trauma. A mild hypothermic effect was also noted. Subsequently, IA inhibited hippocampal neurodegeneration and exerted a beneficial effect on functional outcome after CHI, indicated by reduced neurological severity scores and improved cognitive ability in an object recognition test. This study attributes the anti-inflammatory activity of Boswellia resin to IA and related cembranoid diterpenes and suggests that they may serve as novel neuroprotective agents.


Asunto(s)
Boswellia/química , Lesiones Encefálicas/tratamiento farmacológico , Diterpenos/farmacología , Fármacos Neuroprotectores/farmacología , Animales , Lesiones Encefálicas/patología , Citocinas/efectos de los fármacos , Diterpenos/aislamiento & purificación , Diterpenos/uso terapéutico , Hipocampo/patología , Mediadores de Inflamación/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Ratones , Modelos Animales , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/uso terapéutico , Recuperación de la Función/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...