Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Open Vet J ; 14(1): 144-153, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633157

RESUMEN

Background: A commercially significant species in the aquaculture sector globally, particularly in Egypt, is Litopenaeus vannamei. Aim: The experiment's objective was to ascertain how Sanolife PRO-F impacted the growth, water quality, immunological response, and intestinal morphometry of L. vannamei. Methods: In the current investigation, which lasted 12 weeks, Sanolife PRO-F was administered to shrimp post-larvae at diet doses of 0 (control), 1 (group one), 2 (group two), and 3 (group three) g/kg diet, respectively. Each experimental group had three repetitions. Results: In the current study, shrimp fed on probiotic-treated diets showed a considerable improvement in growth performance measures and survival rate, and the nonspecific immune response was also enhanced. Shrimp fed probiotic diets had longer and more intestinal villi overall. Shrimp fed on the G2 and G3 diets showed no appreciable differences in growth or intestinal morphology. With the G2 and G3 diet, the water had lower concentrations of nitrite and ammonia. Conclusion: The study's findings indicate that Sanolife PRO-F treatment at 2-3 g/kg feed promotes the growth of shrimp, immunological response, gut health and function, and water quality.


Asunto(s)
Bacillus licheniformis , Bacillus pumilus , Penaeidae , Probióticos , Animales , Bacillus subtilis , Calidad del Agua , Inmunidad Innata , Penaeidae/fisiología , Probióticos/farmacología
2.
Open Vet J ; 14(1): 116-135, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38633169

RESUMEN

Background: Mannanoligosaccharides (MOS) usage in fish production has drawn more attention because of their positive benefits on disease resistance and fish performance. Aim: The ongoing research was executed to assess the potential advantages of Bio-Mos® dietary supplementation regarding the growth outcomes, physiological response, oxidative biomarkers, and immunity-linked gene expression in Nile tilapia (Oreochromis niloticus) fingerlings exposed to bacterial infection with Aeromonas hydrophila. Methods: Four experimental diets were developed using a 30% protein baseline diet, with Bio-Mos® added at variable levels; 0.0, 0.5, 1, and 2 g/kg, respectively. 240 healthy Nile tilapia fingerlings were split into 4 groups at random and assigned to 12 glass aquariums (three replicates of 20 fish/treatment). Diets were admitted at a 3% rate of fish biomass/aquarium for 8 weeks. Following the feeding trial, fish from every treatment were intraperitoneally injected with pathogenic A. hydrophila, and then observed for 15 days to record the survival rate percent (SR%) post challenge. Results: Results revealed significant improvement in growth performance, physiological response, immunological parameters (phagocytic index, phagocytic activity, and lysozyme), and antioxidant parameters [catalase, malondialdehyde, glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD)] among Bio-Mos® treated groups. Moreover, Bio-Mos® increased the expression of tumor necrosis factor alpha and Interleukin 1ß, genes linked to the liver immune system. Growth-related genes (GHr), antioxidant-related genes (SOD and GSH-Px). In fish subjected to pathogens, dietary MOS supplementation could significantly lower oxidative stress, showing promise as a preventative supplement for Nile tilapia in place of antibiotics. On the other hand, Bio-Mos® considerably improved each of the three intestinal morphological measures (villus width, villus length, and crypt depth), showing the best overall intestinal structure-improving impact. The challenge with A. hydrophila caused marked degenerative alterations in the intestine, hepatopancreas, spleen, and posterior kidney of Nile tilapia, in the control group. However, lesion severity was greatly decreased and showed marked amelioration with an increased concentration of Bio-Mos®. The A. hydrophila-challenged groups revealed a 100% SR% mainly among the Bio-Mos® supplemented groups. Conclusion: It is recommended to enrich the Nile tilapia fingerlings diets with 2 g.kg-1 of MOS for better results on the growth rate, physiological response, immunological response, and intestinal absorptive capacity.


Asunto(s)
Antioxidantes , Cíclidos , Animales , Antioxidantes/metabolismo , Aeromonas hydrophila/metabolismo , Cíclidos/metabolismo , Suplementos Dietéticos , Superóxido Dismutasa/metabolismo , Estrés Oxidativo , Expresión Génica
3.
Fish Shellfish Immunol ; 146: 109377, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38228249

RESUMEN

Functional supplements, including lysozyme, are highly approved as immunostimulant and antibacterial agents with a high potential for use in aquaculture. In this regard, Nile tilapia was treated with lysozyme at 0, 0.5, 1, 1.5, and 3 g/kg for 60 days, then challenged with Aeromonas hydrophila. Fish were stocked in 15 glass aquaria (70 L each) with an equal initial weight of 10.72 ± 0.71 g per fish and 15 fish per aquarium. The regression analysis revealed that dietary lysozyme supplementation at 1.83-2 g/kg enhanced the growth performance, protein efficiency ratio, and protein productive value while reducing the feed conversion ratio of tilapia. Markedly, tilapia treated with lysozyme had a low mortality rate (30-50 %) compared to the control, which recorded a 70 % mortality rate after 15 days of challenge with A. hydrophila. The regression analysis also revealed that the highest lysozyme activity of tilapia-fed lysozyme for 60 days is achieved by 2.05 g/kg lysozyme. The expression of Nf-κb, IL-1ß, and IL-8 genes is upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. The expression of GPX and CAT genes was higher in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg for 60 days before and after A. hydrophila infection. Before infection, the relative transcription of the lysozyme and C3 was upregulated in tilapia-fed lysozyme at 0.5, 1, 1.5, and 3 g/kg. However, lysozyme gene expression in tilapia treated with 0.5 g/kg lysozyme had no significant differences from those fed 0 g/kg lysozyme. After infection, the relative transcription of the lysozyme gene was upregulated in tilapia fed 1 and 1.5 g/kg, while tilapia fed 1 g/kg lysozyme had the highest C3 gene transcription. After infection, the hepatocytes in the livers of fish fed 0 g/kg lysozyme exhibited a noticeable fatty alteration, along with congestion, a light infiltration of inflammatory cells, and the start of necrosed cell regeneration. However, the livers of fish that received lysozyme were normal except for infiltrations of perivascular and interstitial mononuclear cells, depending on the supplementation dose. In conclusion, dietary lysozyme is recommended at 1.83-2.05 g/kg to gain high growth performance, immune response, and high resistance to A. hydrophila in Nile tilapia.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Tilapia , Animales , Aeromonas hydrophila/fisiología , Pollos , Resistencia a la Enfermedad , Muramidasa/genética , Suplementos Dietéticos , Dieta/veterinaria , Alimentación Animal/análisis
4.
Front Vet Sci ; 9: 918933, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35812877

RESUMEN

This study aimed to detect the impact of Moringa oleifera leaf powder dietary inclusion on the antioxidant and innate immune responses of mono-sex Nile tilapia fingerlings. A total of 180 fingerlings were allocated in a random method into three groups with triplicate each. One group (1st group) received the control diet (basal diet (BD) free of moringa) and the other groups (2nd and 3rd) fed BD containing M. oleifera leaf powder at 5 and 10% of the diet, respectively. After 6 weeks of feeding, fish were randomly redistributed into four replicates and rested for 24 h. Then, each fish in the first two replicates was injected with 0.2 mL of PBS, while the others were injected with 0.2 mL of A. hydrophila suspension (1.8 × 106 CFU/mL). Healthy fish fed on M. oleifera leaf powder showed enhanced immune response manifested by significant increases in phagocytic and lysozyme activities with a marked H/L ratio (P < 0.05). In addition, significant alterations of the lymphocytic and heterophilic population in circulation with increasing infiltration in tissue such as the spleen were noticed. Also, M. oleifera significantly upregulated the antioxidants, CAT and GPx, proinflammatory cytokines, IL1-ß, IL-8, and IFN-γ relative mRNA levels. On the other hand, following A. hydrophila challenging conditions, M. oleifera caused downregulations of IL1-ß, IL-8, and IFN-γ transcription levels, and also lowered the CAT and GPx mRNA levels. In addition, a marked reduction of leukocytic infiltration plus a significant improvement of the degenerative changes in intestinal architecture has occurred. So, M. oleifera leaf powder can be included in the fish diet to enhance immune response under normal health conditions and lower the infection-associated inflammatory response.

6.
Animals (Basel) ; 11(6)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203916

RESUMEN

The optimal water temperature for the normal growth of Nile tilapia is between 26 and 28 °C, and the toxicity of pesticides is strongly related to water temperature. An alternate approach to augmenting the resistance of fish to ambient water toxicity and low water temperature via synbiotic feeding was proposed. In this study, fish were allocated into four groups with 10 fish in each replicate, where they were fed a basal diet or synbiotics (550 mg/kg) and kept at a suboptimal water temperature (21 ± 2 °C). The prepared diets were fed to Nile tilapia for 30 days with or without deltamethrin (DMT) ambient exposure (15 µg/L). The groups were named control (basal diet without DMT toxicity), DMT (basal diet with DMT toxicity), synbiotic (synbiotics without DMT toxicity), and DMT + synbiotic (synbiotics with DMT toxicity). The results displayed upregulated transcription of catalase, glutathione peroxidase, and interferon (IFN-γ) genes caused by DMT exposure and synbiotic feeding when compared with the controls. Moreover, HSP70 and CASP3 genes displayed increased transcription caused by DMT exposure without synbiotic feeding. However, fish fed with synbiotics showed downregulated HSP70 and CASP3 gene expressions. The transcription of IL-1ß and IL-8 genes were also decreased by DMT exposure, while fish fed synbiotics showed upregulated levels. DMT exposure resulted in irregular histopathological features in gills, intestine, spleen, and liver tissues, while fish fed synbiotics showed regular, normal, and protected histopathological images. Our results indicated that dietary synbiotics ameliorated histopathological damages in DMT-exposed tilapia through alleviation of oxidative stress and inflammation as well as enhancing the immunity.

7.
Vet Med Sci ; 7(5): 1575-1586, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33955189

RESUMEN

BACKGROUND: Fish farming is one of the most productive economies in the world. One of the essential goals in fish production is to minimize processing costs while maintaining and increasing the vital functions, weight and immunity of fish. OBJECTIVE: We conducted this study to explore nanoselenium (Nano-Se) particles in various feeding schemes. MATERIAL AND METHOD: Nano-Se particles incorporated in the basal diet at (0.5 mg/kg diet), and the fish was divided into six groups after adaptation as the follows: The first group was feed daily with a diet containing Nano-Se (0.5 mg/kg diet); the second group was exposed to a feeding programme in which it has day feeding followed by day of starvation with a diet containing Nano-Se (0.5 mg/kg diet); the third group was day feeding followed by 2 days of starvation; the fourth group served as a negative control group in which this group was continuous feeding with a basal diet without Nano-Se; the fifth group was day feeding with the basal diet followed by a day of starvation; and the sixth group was day feeding with basal diet followed by 2 days of starvation. RESULT: Our result revealed that Group 2 showed significant improvement in haematological parameters, red blood cells and haemoglobin with a substantial increase in total protein (p < 0.05) as well as lysosomal and phagocytic activity with considerable upregulation of growth hormone and insulin growth factor 1 in addition to markedly increase in the pro-inflammatory cytokines. Finally, this study offers the first-time dietary regime with Nano-Se supplementation that saves the feeding cost and increases fish welfare and growth.


Asunto(s)
Cíclidos , Selenio , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Cíclidos/metabolismo , Suplementos Dietéticos/análisis , Estanques , Selenio/metabolismo , Selenio/farmacología
8.
Environ Sci Pollut Res Int ; 27(11): 11608-11617, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31965509

RESUMEN

The use of feed additives in aquatic animals improves health conditions and well-being under pesticide toxicity. Thus, this study was aimed at evaluating the effect of an immunobiotic mixture (IM) on the growth performance, hemato-biochemistry, and immunity of Nile tilapia exposed to subacute deltamethrin (DMT). Fish were distributed into four groups: groups 1 and 2 were fed a control diet, while groups 3 and 4 were fed IM. Groups 2 and 4 were exposed to DMT (15 µg/L) in rearing water. The results revealed that DMT-exposed fish exhibited significantly lower final body weights, weight gain, specific growth rate, and survival rate (P < 0.05), while IM feeding resulted in improved growth performance and survival rate in fish with or without DMT toxicity. After 15 and 30 days, DMT-treated fish showed a significant increase in blood urea and bilirubin as well as hepatic enzymes (alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase) (P < 0.05), while supplementation of the IM mixture significantly lowered these levels in Nile tilapia. Blood total protein, globulin, albumin, white blood cells, red blood cells, hemoglobin, phagocytic index, and phagocytic and lysozyme activities were significantly decreased in tilapia subjected to DMT (P < 0.05), while supplementation of the IM mixture significantly increased these levels. Fish fed IM without DMT exposure showed the lowest cortisol and glucose levels, while fish exposed to DMT without IM showed the highest levels (P < 0.05) after 15 and 30 days. To conclude, IM supplementation exhibited defensive effects against DMT toxicity in Nile tilapia by improving growth performance, hematology, blood biochemistry, and immunity.


Asunto(s)
Cíclidos , Piretrinas , Alimentación Animal/análisis , Animales , Dieta , Nitrilos
9.
Fish Shellfish Immunol ; 98: 301-311, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31972291

RESUMEN

The protective role of ß-glucan (BG) on liver function, histopathology, immune and antioxidant related gene expressions in Nile tilapia exposed to subacute deltamethrin (DLM) was investigated for 30 days. Fish (28.18 ± 1.34 g) of the 1st and 2nd groups fed the control diet, while the 3rd and 4th groups fed BG at 0.5 g/kg and the 2nd and 4th groups were exposed to DLM (15 µg/L) in rearing water. DLM-treated fish displayed a considerable increase in blood biochemical parameters (creatinine, urea and bilirubin) as well as hepatic enzymes (ALP, AST and ALT) (P < 0.05). Blood total protein, globulin, albumin, WBCs, RBCs, Hb, phagocytic index, phagocytic and lysozyme activities were significantly decreased in fish subjected to DLM (P < 0.05). Fish fed BG showed significantly the lowest cortisol and glucose levels, while fish exposed to DLM without feeding BG showed the highest cortisol and glucose levels (P < 0.05) after 15 and 30 days. Additionally, DLM toxicity caused downregulation in antioxidant (CAT and GPx) and immune (IL-1ß and IL-8) related gene expressions, while and IFN-γ, HSP70 and CASP3 were upregulated. The histopathological examination of Nile tilapia exposed to DLM revealed damage in gills, intestine, spleen and liver which confirmed the toxic effects. Conversely, BG presented protective effects and restored the above-mentioned parameters when fish exposed to DLM and fed BG. Thus, BG supplementation exhibited defensive effects against DLM toxicity in Nile tilapia through improving blood biochemical responses, immune, and antioxidant related gene expressions as well as histopathological effects.


Asunto(s)
Cíclidos/inmunología , Suplementos Dietéticos , Insecticidas/toxicidad , Nitrilos/toxicidad , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , beta-Glucanos/farmacología , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Glucemia/efectos de los fármacos , Citocinas/genética , Dieta/veterinaria , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Hidrocortisona/sangre , Inflamación/veterinaria , beta-Glucanos/administración & dosificación
10.
Aquat Toxicol ; 219: 105377, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31838306

RESUMEN

Deltamethrin (DLM) is a synthetic pyrethroid used for agricultural purposes to control insects and has been found to pollute the aquatic environment and leads to serious health problems. Lactobacillus plantaruml-137 (L-137) has gained more popularity as functional supplement for its immunomodulatory effects and antioxidant potential. This study was designed to examine the potential of l-137 on liver function, histopathology, immune and antioxidant related gene expressions in Nile tilapia exposed to subacute DLM for 30 days. Fish (mean weight of 28.18 ± 1.34 g) was distributed into four groups (triplicates): the first and second groups fed the control diet, while the third and fourth groups fed l-137 at 50 mg/kg and the second and fourth groups were exposed to DLM (15 µg/L) in rearing water (control, DLM, l-137 and DLM + L-137, respectively). DLM-treated fish groups showed a significant increase in blood biochemical parameters (creatinine, urea and bilirubin) as well as hepatic enzymes (ALP, AST and ALT) (P < 0.05). Blood total protein, globulin, albumin, WBCs, RBCs, Hb, phagocytic index, phagocytic and lysozyme activities were significantly decreased in fish exposed to DLM (P < 0.05). Additionally, DLM toxicity downregulated the transcription of immune genes (IL-1ß and IL-8), while upregulated the stress related genes (HSP70 and CASP3). The histopathological images of Nile tilapia exposed to DLM revealed damage in gills, intestine, spleen and liver which confirmed the toxic effects. Conversely, l-137 presented protective effects and restored the aforementioned parameters when fish exposed to DLM and fed l-137. Further, l-137 restored the antioxidative capacity (CAT and GPx). Thus, l-137 supplementation exhibited defensive effects against DLM toxicity in Nile tilapia through improving blood biochemical responses, immune, and antioxidant related gene expressions as well as histopathological effects.


Asunto(s)
Cíclidos , Lactobacillus plantarum , Nitrilos/toxicidad , Probióticos/farmacología , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Animales , Antioxidantes/metabolismo , Cíclidos/genética , Cíclidos/inmunología , Cíclidos/metabolismo , Branquias/efectos de los fármacos , Branquias/patología , Hígado/efectos de los fármacos , Hígado/patología , Bazo/efectos de los fármacos , Bazo/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...