Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Immunity ; 57(2): 379-399.e18, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38301653

RESUMEN

Palatine tonsils are secondary lymphoid organs (SLOs) representing the first line of immunological defense against inhaled or ingested pathogens. We generated an atlas of the human tonsil composed of >556,000 cells profiled across five different data modalities, including single-cell transcriptome, epigenome, proteome, and immune repertoire sequencing, as well as spatial transcriptomics. This census identified 121 cell types and states, defined developmental trajectories, and enabled an understanding of the functional units of the tonsil. Exemplarily, we stratified myeloid slan-like subtypes, established a BCL6 enhancer as locally active in follicle-associated T and B cells, and identified SIX5 as putative transcriptional regulator of plasma cell maturation. Analyses of a validation cohort confirmed the presence, annotation, and markers of tonsillar cell types and provided evidence of age-related compositional shifts. We demonstrate the value of this resource by annotating cells from B cell-derived mantle cell lymphomas, linking transcriptional heterogeneity to normal B cell differentiation states of the human tonsil.


Asunto(s)
Linfocitos B , Tonsila Palatina , Humanos , Adulto , Linfocitos B/metabolismo
2.
Nat Commun ; 14(1): 3240, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296104

RESUMEN

The mechanisms by which DNA alleles contribute to disease risk, drug response, and other human phenotypes are highly context-specific, varying across cell types and different conditions. Human induced pluripotent stem cells are uniquely suited to study these context-dependent effects but cell lines from hundreds or thousands of individuals are required. Village cultures, where multiple induced pluripotent stem lines are cultured and differentiated in a single dish, provide an elegant solution for scaling induced pluripotent stem experiments to the necessary sample sizes required for population-scale studies. Here, we show the utility of village models, demonstrating how cells can be assigned to an induced pluripotent stem line using single-cell sequencing and illustrating that the genetic, epigenetic or induced pluripotent stem line-specific effects explain a large percentage of gene expression variation for many genes. We demonstrate that village methods can effectively detect induced pluripotent stem line-specific effects, including sensitive dynamics of cell states.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Línea Celular , Diferenciación Celular/genética , Fenotipo
3.
Nat Rev Genet ; 24(8): 573-584, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37258725

RESUMEN

The use of genomics is firmly established in clinical practice, resulting in innovations across a wide range of disciplines such as genetic screening, rare disease diagnosis and molecularly guided therapy choice. This new field of genomic medicine has led to improvements in patient outcomes. However, most clinical applications of genomics rely on information generated from bulk approaches, which do not directly capture the genomic variation that underlies cellular heterogeneity. With the advent of single-cell technologies, research is rapidly uncovering how genomic data at cellular resolution can be used to understand disease pathology and mechanisms. Both DNA-based and RNA-based single-cell technologies have the potential to improve existing clinical applications and open new application spaces for genomics in clinical practice, with oncology, immunology and haematology poised for initial adoption. However, challenges in translating cellular genomics from research to a clinical setting must first be overcome.


Asunto(s)
Pruebas Genéticas , Genómica , Humanos , Genómica/métodos , Medicina de Precisión/métodos
4.
Genome Res ; 31(10): 1913-1926, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34548323

RESUMEN

The tumor immune microenvironment is a main contributor to cancer progression and a promising therapeutic target for oncology. However, immune microenvironments vary profoundly between patients, and biomarkers for prognosis and treatment response lack precision. A comprehensive compendium of tumor immune cells is required to pinpoint predictive cellular states and their spatial localization. We generated a single-cell tumor immune atlas, jointly analyzing published data sets of >500,000 cells from 217 patients and 13 cancer types, providing the basis for a patient stratification based on immune cell compositions. Projecting immune cells from external tumors onto the atlas facilitated an automated cell annotation system. To enable in situ mapping of immune populations for digital pathology, we applied SPOTlight, combining single-cell and spatial transcriptomics data and identifying colocalization patterns of immune, stromal, and cancer cells in tumor sections. We expect the tumor immune cell atlas, together with our versatile toolbox for precision oncology, to advance currently applied stratification approaches for prognosis and immunotherapy.


Asunto(s)
Neoplasias , Biomarcadores de Tumor/genética , Humanos , Inmunoterapia , Neoplasias/genética , Neoplasias/terapia , Medicina de Precisión , Pronóstico , Microambiente Tumoral
5.
Hum Genomics ; 15(1): 32, 2021 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-34090531

RESUMEN

For decades, various strategies have been proposed to solve the enigma of hemoglobinopathies, especially severe cases. However, most of them seem to be lagging in terms of effectiveness and safety. So far, the most prevalent and promising treatment options for patients with ß-types hemoglobinopathies, among others, predominantly include drug treatment and gene therapy. Despite the significant improvements of such interventions to the patient's quality of life, a variable response has been demonstrated among different groups of patients and populations. This is essentially due to the complexity of the disease and other genetic factors. In recent years, a more in-depth understanding of the molecular basis of the ß-type hemoglobinopathies has led to significant upgrades to the current technologies, as well as the addition of new ones attempting to elucidate these barriers. Therefore, the purpose of this article is to shed light on pharmacogenomics, gene addition, and genome editing technologies, and consequently, their potential use as direct and indirect genome-based interventions, in different strategies, referring to drug and gene therapy. Furthermore, all the latest progress, updates, and scientific achievements for patients with ß-type hemoglobinopathies will be described in detail.


Asunto(s)
Anemia de Células Falciformes/terapia , Hemoglobinopatías/terapia , Globinas beta/genética , Talasemia beta/terapia , Anemia de Células Falciformes/genética , Edición Génica/métodos , Terapia Genética/tendencias , Hemoglobinopatías/sangre , Hemoglobinopatías/genética , Humanos , Globinas beta/uso terapéutico , Talasemia beta/genética
6.
Nat Commun ; 12(1): 1503, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33686071

RESUMEN

Brain metastases are the most common tumor of the brain with a dismal prognosis. A fraction of patients with brain metastasis benefit from treatment with immune checkpoint inhibitors (ICI) and the degree and phenotype of the immune cell infiltration has been used to predict response to ICI. However, the anatomical location of brain lesions limits access to tumor material to characterize the immune phenotype. Here, we characterize immune cells present in brain lesions and matched cerebrospinal fluid (CSF) using single-cell RNA sequencing combined with T cell receptor genotyping. Tumor immune infiltration and specifically CD8+ T cell infiltration can be discerned through the analysis of the CSF. Consistently, identical T cell receptor clonotypes are detected in brain lesions and CSF, confirming cell exchange between these compartments. The analysis of immune cells of the CSF can provide a non-invasive alternative to predict the response to ICI, as well as identify the T cell receptor clonotypes present in brain metastasis.


Asunto(s)
Neoplasias Encefálicas/inmunología , Líquido Cefalorraquídeo/inmunología , Leucocitos , Microambiente Tumoral/inmunología , Adenocarcinoma del Pulmón , Encéfalo/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Linfocitos T CD8-positivos/inmunología , Humanos , Inhibidores de Puntos de Control Inmunológico , Neoplasias Pulmonares , Pronóstico
7.
Ther Adv Med Oncol ; 12: 1758835920929579, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670419

RESUMEN

BACKGROUND: The aim of this study was to test the feasibility and utility of developing patient-derived orthotopic xenograft (PDOX) models for patients with malignant peripheral nerve sheath tumors (MPNSTs) to aid therapeutic interventions in real time. PATIENT & METHODS: A sporadic relapsed MPNST developed in a 14-year-old boy was engrafted in mice, generating a PDOX model for use in co-clinical trials after informed consent. SNP-array and exome sequencing was performed on the relapsed tumor. Genomics, drug availability, and published literature guided PDOX treatments. RESULTS: A MPNST PDOX model was generated and expanded. Analysis of the patient's relapsed tumor revealed mutations in the MAPK1, EED, and CDK2NA/B genes. First, the PDOX model was treated with the same therapeutic regimen as received by the patient (everolimus and trametinib); after observing partial response, tumors were left to regrow. Regrown tumors were treated based on mutations (palbociclib and JQ1), drug availability, and published literature (nab-paclitaxel; bevacizumab; sorafenib plus doxorubicin; and gemcitabine plus docetaxel). The patient had a lung metastatic relapse and was treated according to PDOX results, first with nab-paclitaxel, second with sorafenib plus doxorubicin after progression, although a complete response was not achieved and multiple metastasectomies were performed. The patient is currently disease free 46 months after first relapse. CONCLUSION: Our results indicate the feasibility of generating MPNST-PDOX and genomic characterization to guide treatment in real time. Although the treatment responses observed in our model did not fully recapitulate the patient's response, this pilot study identify key aspects to improve our co-clinical testing approach in real time.

8.
Nat Biotechnol ; 38(6): 747-755, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32518403

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is the leading technique for characterizing the transcriptomes of individual cells in a sample. The latest protocols are scalable to thousands of cells and are being used to compile cell atlases of tissues, organs and organisms. However, the protocols differ substantially with respect to their RNA capture efficiency, bias, scale and costs, and their relative advantages for different applications are unclear. In the present study, we generated benchmark datasets to systematically evaluate protocols in terms of their power to comprehensively describe cell types and states. We performed a multicenter study comparing 13 commonly used scRNA-seq and single-nucleus RNA-seq protocols applied to a heterogeneous reference sample resource. Comparative analysis revealed marked differences in protocol performance. The protocols differed in library complexity and their ability to detect cell-type markers, impacting their predictive value and suitability for integration into reference cell atlases. These results provide guidance both for individual researchers and for consortium projects such as the Human Cell Atlas.


Asunto(s)
Análisis de Secuencia de ARN , Análisis de la Célula Individual , Animales , Benchmarking , Línea Celular , Bases de Datos Genéticas , Genómica/métodos , Genómica/normas , Humanos , Ratones , Análisis de Secuencia de ARN/métodos , Análisis de Secuencia de ARN/normas , Análisis de la Célula Individual/métodos , Análisis de la Célula Individual/normas
9.
Genome Biol ; 21(1): 112, 2020 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-32393363

RESUMEN

Robust protocols and automation now enable large-scale single-cell RNA and ATAC sequencing experiments and their application on biobank and clinical cohorts. However, technical biases introduced during sample acquisition can hinder solid, reproducible results, and a systematic benchmarking is required before entering large-scale data production. Here, we report the existence and extent of gene expression and chromatin accessibility artifacts introduced during sampling and identify experimental and computational solutions for their prevention.


Asunto(s)
Artefactos , Genómica , Análisis de la Célula Individual , Criopreservación , Epigenoma , Femenino , Humanos , Leucocitos Mononucleares , Masculino , Factores de Tiempo , Transcriptoma
10.
Cell Stem Cell ; 26(6): 845-861.e12, 2020 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-32396863

RESUMEN

Colorectal cancers (CRCs) are composed of an amalgam of cells with distinct genotypes and phenotypes. Here, we reveal a previously unappreciated heterogeneity in the biosynthetic capacities of CRC cells. We discover that the majority of ribosomal DNA transcription and protein synthesis in CRCs occurs in a limited subset of tumor cells that localize in defined niches. The rest of the tumor cells undergo an irreversible loss of their biosynthetic capacities as a consequence of differentiation. Cancer cells within the biosynthetic domains are characterized by elevated levels of the RNA polymerase I subunit A (POLR1A). Genetic ablation of POLR1A-high cell population imposes an irreversible growth arrest on CRCs. We show that elevated biosynthesis defines stemness in both LGR5+ and LGR5- tumor cells. Therefore, a common architecture in CRCs is a simple cell hierarchy based on the differential capacity to transcribe ribosomal DNA and synthesize proteins.


Asunto(s)
Neoplasias Colorrectales , Células Madre Neoplásicas , Línea Celular Tumoral , Neoplasias Colorrectales/genética , ADN Ribosómico , Humanos , Receptores Acoplados a Proteínas G
11.
Cell Rep ; 28(2): 352-367.e9, 2019 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-31291573

RESUMEN

Mammalian gametogenesis involves dramatic and tightly regulated chromatin remodeling, whose regulatory pathways remain largely unexplored. Here, we generate a comprehensive high-resolution structural and functional atlas of mouse spermatogenesis by combining in situ chromosome conformation capture sequencing (Hi-C), RNA sequencing (RNA-seq), and chromatin immunoprecipitation sequencing (ChIP-seq) of CCCTC-binding factor (CTCF) and meiotic cohesins, coupled with confocal and super-resolution microscopy. Spermatogonia presents well-defined compartment patterns and topological domains. However, chromosome occupancy and compartmentalization are highly re-arranged during prophase I, with cohesins bound to active promoters in DNA loops out of the chromosomal axes. Compartment patterns re-emerge in round spermatids, where cohesin occupancy correlates with transcriptional activity of key developmental genes. The compact sperm genome contains compartments with actively transcribed genes but no fine-scale topological domains, concomitant with the presence of protamines. Overall, we demonstrate how genome-wide cohesin occupancy and transcriptional activity is associated with three-dimensional (3D) remodeling during spermatogenesis, ultimately reprogramming the genome for the next generation.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Genómica/métodos , Espermatogénesis/genética , Humanos , Masculino , Conformación Molecular , Cohesinas
12.
JCI Insight ; 52019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30843871

RESUMEN

The endoplasmic reticulum (ER) of cancer cells needs to adapt to the enhanced proteotoxic stress associated with the accumulation of unfolded, misfolded and transformation-associated proteins. One way by which tumors thrive in the context of ER stress is by promoting ER-Associated Degradation (ERAD), although the mechanisms are poorly understood. Here, we show that the Small p97/VCP Interacting Protein (SVIP), an endogenous inhibitor of ERAD, undergoes DNA hypermethylation-associated silencing in tumorigenesis to achieve this goal. SVIP exhibits tumor suppressor features and its recovery is associated with increased ER stress and growth inhibition. Proteomic and metabolomic analyses show that cancer cells with epigenetic loss of SVIP are depleted in mitochondrial enzymes and oxidative respiration activity. This phenotype is reverted upon SVIP restoration. The dependence of SVIP hypermethylated cancer cells on aerobic glycolysis and glucose was also associated with sensitivity to an inhibitor of the glucose transporter GLUT1. This could be relevant to the management of tumors carrying SVIP epigenetic loss, because these occur in high-risk patients who manifest poor clinical outcomes. Overall, our study provides insights into how epigenetics helps deal with ER stress and how SVIP epigenetic loss in cancer may be amenable to therapies that target glucose transporters.


Asunto(s)
Reprogramación Celular/fisiología , Degradación Asociada con el Retículo Endoplásmico/fisiología , Retículo Endoplásmico/metabolismo , Epigenómica , Proteínas de la Membrana/metabolismo , Neoplasias/metabolismo , Proteínas de Unión a Fosfato/metabolismo , Animales , Carcinogénesis , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Reprogramación Celular/genética , Metilación de ADN , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica , Silenciador del Gen , Transportador de Glucosa de Tipo 1 , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/farmacología , Ratones , Ratones Desnudos , Mitocondrias/metabolismo , Neoplasias/genética , Fenotipo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/farmacología , Proteómica
13.
Cancer Lett ; 447: 86-92, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30677446

RESUMEN

Somatic epigenetic inactivation of the DNA repair protein O6-methylguanine DNA methyltransferase (MGMT) is frequent in colorectal cancer (CRC); however, its involvement in CRC predisposition remains unexplored. We assessed the role and relevance of MGMT germline mutations and epimutations in familial and early-onset CRC. Mutation and promoter methylation screenings were performed in 473 familial and/or early-onset mismatch repair-proficient nonpolyposis CRC cases. No constitutional MGMT inactivation by promoter methylation was observed. Of six rare heterozygous germline variants identified, c.346C > T (p.H116Y) and c.476G > A (p.R159Q), detected in three and one families respectively, affected highly conserved residues and showed segregation with cancer in available family members. In vitro, neither p.H116Y nor p.R159Q caused statistically significant reduction of MGMT repair activity. No evidence of somatic second hits was found in the studied tumors. Case-control data showed over-representation of c.346C > T (p.H116Y) in familial CRC compared to controls, but no overall association of MGMT mutations with CRC predisposition. In conclusion, germline mutations and constitutional epimutations in MGMT are not major players in hereditary CRC. Nevertheless, the over-representation of c.346C > T (p.H116Y) in our familial CRC cohort warrants further research.


Asunto(s)
Neoplasias Colorrectales/genética , Metilasas de Modificación del ADN/genética , Enzimas Reparadoras del ADN/genética , Células Germinativas/fisiología , Mutación de Línea Germinal/genética , Proteínas Supresoras de Tumor/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Casos y Controles , Metilación de ADN/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Masculino , Persona de Mediana Edad , Regiones Promotoras Genéticas/genética , Adulto Joven
14.
Nat Protoc ; 13(12): 2742-2757, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30446749

RESUMEN

Single-cell RNA sequencing is at the forefront of high-resolution phenotyping experiments for complex samples. Although this methodology requires specialized equipment and expertise, it is now widely applied in research. However, it is challenging to create broadly applicable experimental designs because each experiment requires the user to make informed decisions about sample preparation, RNA sequencing and data analysis. To facilitate this decision-making process, in this tutorial we summarize current methodological and analytical options, and discuss their suitability for a range of research scenarios. Specifically, we provide information about best practices for the separation of individual cells and provide an overview of current single-cell capture methods at different cellular resolutions and scales. Methods for the preparation of RNA sequencing libraries vary profoundly across applications, and we discuss features important for an informed selection process. An erroneous or biased analysis can lead to misinterpretations or obscure biologically important information. We provide a guide to the major data processing steps and options for meaningful data interpretation. These guidelines will serve as a reference to support users in building a single-cell experimental framework-from sample preparation to data interpretation-that is tailored to the underlying research context.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Análisis de Secuencia de ARN/métodos , Transcriptoma , Animales , Biblioteca de Genes , Genómica/métodos , Humanos , Proyectos de Investigación , Tamaño de la Muestra , Manejo de Especímenes/métodos
16.
Clin Cancer Res ; 24(15): 3755-3766, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29618620

RESUMEN

Purpose: To investigate the genetic basis of cisplatin resistance as efficacy of cisplatin-based chemotherapy in the treatment of distinct malignancies is often hampered by intrinsic or acquired drug resistance of tumor cells.Experimental Design: We produced 14 orthoxenograft transplanting human nonseminomatous testicular germ cell tumors (TGCT) in mice, keeping the primary tumor features in terms of genotype, phenotype, and sensitivity to cisplatin. Chromosomal and genetic alterations were evaluated in matched cisplatin-sensitive and their counterpart orthoxenografts that developed resistance to cisplatin in nude mice.Results: Comparative genomic hybridization analyses of four matched orthoxenografts identified recurrent chromosomal rearrangements across cisplatin-resistant tumors in three of them, showing gains at 9q32-q33.1 region. We found a clinical correlation between the presence of 9q32-q33.1 gains in cisplatin-refractory patients and poorer overall survival (OS) in metastatic germ cell tumors. We studied the expression profile of the 60 genes located at that genomic region. POLE3 and AKNA were the only two genes deregulated in resistant tumors harboring the 9q32-q33.1 gain. Moreover, other four genes (GCS, ZNF883, CTR1, and FLJ31713) were deregulated in all five resistant tumors independently of the 9q32-q33.1 amplification. RT-PCRs in tumors and functional analyses in Caenorhabditis elegans (C. elegans) indicate that the influence of 9q32-q33.1 genes in cisplatin resistance can be driven by either up- or downregulation. We focused on glucosylceramide synthase (GCS) to demonstrate that the GCS inhibitor DL-threo-PDMP resensitizes cisplatin-resistant germline-derived orthoxenografts to cisplatin.Conclusions: Orthoxenografts can be used preclinically not only to test the efficiency of drugs but also to identify prognosis markers and gene alterations acting as drivers of the acquired cisplatin resistance. Clin Cancer Res; 24(15); 3755-66. ©2018 AACR.


Asunto(s)
Cisplatino/efectos adversos , ADN Polimerasa III/genética , Proteínas de Unión al ADN/genética , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Proteínas Nucleares/genética , Nucleoproteínas/genética , Neoplasias Testiculares/tratamiento farmacológico , Factores de Transcripción/genética , Adolescente , Adulto , Animales , Línea Celular Tumoral , Aberraciones Cromosómicas/efectos de los fármacos , Cromosomas Humanos Par 9/efectos de los fármacos , Cromosomas Humanos Par 9/genética , Cisplatino/administración & dosificación , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Genómica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Mutación Puntual/genética , Neoplasias Testiculares/genética , Neoplasias Testiculares/patología , Ensayos Antitumor por Modelo de Xenoinjerto , Adulto Joven
17.
Adv Cancer Res ; 135: 189-220, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28882223

RESUMEN

MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression mainly at the posttranscriptional level. Similar to protein-coding genes, their expression is also controlled by genetic and epigenetic mechanisms. Disruption of these control processes leads to abnormal expression of miRNAs in cancer. In this chapter, we discuss the supportive links between miRNAs and epigenetics in the context of carcinogenesis. miRNAs can be epigenetically regulated by DNA methylation and/or specific histone modifications. However, they can themselves (epi-miRNAs) repress key enzymes that drive epigenetic remodeling and also bind to complementary sequences in gene promoters, recruiting specific protein complexes that modulate chromatin structure and gene expression. All these issues affect the transcriptional landscape of cells. Most important, in the cancer clinical scenario, knowledge about miRNAs epigenetic dysregulation can not only be beneficial as a prognostic biomarker, but can also help in the design of new therapeutic approaches.


Asunto(s)
Epigénesis Genética/genética , MicroARNs/genética , Biomarcadores de Tumor/genética , Carcinogénesis/genética , Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos
18.
Oncotarget ; 8(31): 51621-51629, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28881673

RESUMEN

BET bromodomain inhibitors, which have an antitumoral effect against various solid cancer tumor types, have not been studied in detail in luminal breast cancer, despite the prevalence of this subtype of mammary malignancy. Here we demonstrate that the BET bromodomain inhibitor JQ1 exerts growth-inhibitory activity in human luminal breast cancer cell lines associated with a depletion of the C-MYC oncogene, but does not alter the expression levels of the BRD4 bromodomain protein. Interestingly, expression microarray analyses indicate that, upon JQ1 administration, the antitumoral phenotype also involves downregulation of relevant breast cancer oncogenes such as the Breast Carcinoma-Amplified Sequence 1 (BCAS1) and the PDZ Domain-Containing 1 (PDZK1). We have also applied these in vitro findings in an in vivo model by studying a transgenic mouse model representing the luminal B subtype of breast cancer, the MMTV-PyMT, in which the mouse mammary tumor virus promoter is used to drive the expression of the polyoma virus middle T-antigen to the mammary gland. We have observed that the use of the BET bromodomain inhibitor for the treatment of established breast neoplasms developed in the MMTV-PyMT model shows antitumor potential. Most importantly, if JQ1 is given before the expected time of tumor detection in the MMTV-PyMT mice, it retards the onset of the disease and increases the survival of these animals. Thus, our findings indicate that the use of bromodomain inhibitors is of great potential in the treatment of luminal breast cancer and merits further investigation.

19.
Proc Natl Acad Sci U S A ; 113(47): E7535-E7544, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27821766

RESUMEN

Long noncoding RNAs (lncRNAs) are important regulators of cellular homeostasis. However, their contribution to the cancer phenotype still needs to be established. Herein, we have identified a p53-induced lncRNA, TP53TG1, that undergoes cancer-specific promoter hypermethylation-associated silencing. In vitro and in vivo assays identify a tumor-suppressor activity for TP53TG1 and a role in the p53 response to DNA damage. Importantly, we show that TP53TG1 binds to the multifaceted DNA/RNA binding protein YBX1 to prevent its nuclear localization and thus the YBX1-mediated activation of oncogenes. TP53TG1 epigenetic inactivation in cancer cells releases the transcriptional repression of YBX1-targeted growth-promoting genes and creates a chemoresistant tumor. TP53TG1 hypermethylation in primary tumors is shown to be associated with poor outcome. The epigenetic loss of TP53TG1 therefore represents an altered event in an lncRNA that is linked to classical tumoral pathways, such as p53 signaling, but is also connected to regulatory networks of the cancer cell.


Asunto(s)
Proteínas de Unión al ADN/genética , Neoplasias/genética , Neoplasias/patología , Proteína p53 Supresora de Tumor/metabolismo , Proteína 1 de Unión a la Caja Y/metabolismo , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Daño del ADN , Metilación de ADN , Regulación hacia Abajo , Epigénesis Genética , Células HCT116 , Humanos , Ratones , Trasplante de Neoplasias , Neoplasias/metabolismo , Pronóstico , Regiones Promotoras Genéticas , Transducción de Señal , Proteína 1 de Unión a la Caja Y/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...