Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 218(7): 2185-2197, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31197030

RESUMEN

In mammals, centrioles participate in brain development, and human mutations affecting centriole duplication cause microcephaly. Here, we identify a role for the mammalian homologue of yeast SFI1, involved in the duplication of the yeast spindle pole body, as a critical regulator of centriole duplication in mammalian cells. Mammalian SFI1 interacts with USP9X, a deubiquitylase associated with human syndromic mental retardation. SFI1 localizes USP9X to the centrosome during S phase to deubiquitylate STIL, a critical regulator of centriole duplication. USP9X-mediated deubiquitylation protects STIL from degradation. Consistent with a role for USP9X in stabilizing STIL, cells from patients with USP9X loss-of-function mutations have reduced STIL levels. Together, these results demonstrate that SFI1 is a centrosomal protein that localizes USP9X to the centrosome to stabilize STIL and promote centriole duplication. We propose that the USP9X protection of STIL to facilitate centriole duplication underlies roles of both proteins in human neurodevelopment.


Asunto(s)
Proteínas de Ciclo Celular/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Ubiquitina Tiolesterasa/genética , Ciclo Celular/genética , Centriolos/genética , Centriolos/ultraestructura , Centrosoma/ultraestructura , Femenino , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Microcefalia/patología , Microscopía Electrónica , Mutación , Trastornos del Neurodesarrollo/genética , Proteolisis
2.
Elife ; 82019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115335

RESUMEN

Centrioles play critical roles in organizing the assembly of the mitotic spindle and templating the formation of primary cilia. Centriole duplication occurs once per cell cycle and is regulated by Polo-like kinase 4 (PLK4). Although significant progress has been made in understanding centriole composition, we have limited knowledge of how PLK4 activity controls specific steps in centriole formation. Here, we show that PLK4 phosphorylates its centriole substrate STIL on a conserved site, S428, to promote STIL binding to CPAP. This phospho-dependent binding interaction is conserved in Drosophila and facilitates the stable incorporation of both STIL and CPAP into the centriole. We propose that procentriole assembly requires PLK4 to phosphorylate STIL in two different regions: phosphorylation of residues in the STAN motif allow STIL to bind SAS6 and initiate cartwheel assembly, while phosphorylation of S428 promotes the binding of STIL to CPAP, linking the cartwheel to microtubules of the centriole wall.


Asunto(s)
Centriolos/metabolismo , Proteínas de Drosophila/metabolismo , Microtúbulos/metabolismo , Proteínas Nucleares/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Drosophila , Proteínas Asociadas a Microtúbulos , Biogénesis de Organelos , Fosforilación , Unión Proteica
3.
Methods Cell Biol ; 144: 107-135, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29804665

RESUMEN

The ability to deplete a protein of interest is critical for dissecting cellular processes. Traditional methods of protein depletion are often slow acting, which can be problematic when characterizing a cellular process that occurs within a short period of time, such as mitosis. Furthermore, these methods are usually not reversible. Recent advances to achieve protein depletion function by inducibly trafficking proteins of interest to an endogenous E3 ubiquitin ligase complex to promote ubiquitination and subsequent degradation by the proteasome. One of these systems, the auxin-inducible degron (AID) system, has been shown to permit rapid and inducible degradation of AID-tagged target proteins in mammalian cells. The AID system can control the abundance of a diverse set of cellular proteins, including those contained within protein complexes, and is active in all phases of the cell cycle. Here we discuss considerations for the successful implementation of the AID system and describe a protocol using CRISPR/Cas9 to achieve biallelic insertion of an AID in human cells. This method can also be adapted to insert other tags, such as fluorescent proteins, at defined genomic locations.


Asunto(s)
Ácidos Indolacéticos/farmacología , Mamíferos/metabolismo , Proteolisis/efectos de los fármacos , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Línea Celular , División del ADN , Humanos , ARN Guía de Kinetoplastida/metabolismo , Reproducibilidad de los Resultados , Transducción Genética
4.
Curr Biol ; 26(9): 1127-37, 2016 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-27112295

RESUMEN

Centrioles are essential for the assembly of both centrosomes and cilia. Centriole biogenesis occurs once and only once per cell cycle and is temporally coordinated with cell-cycle progression, ensuring the formation of the right number of centrioles at the right time. The formation of new daughter centrioles is guided by a pre-existing, mother centriole. The proximity between mother and daughter centrioles was proposed to restrict new centriole formation until they separate beyond a critical distance. Paradoxically, mother and daughter centrioles overcome this distance in early mitosis, at a time when triggers for centriole biogenesis Polo-like kinase 4 (PLK4) and its substrate STIL are abundant. Here we show that in mitosis, the mitotic kinase CDK1-CyclinB binds STIL and prevents formation of the PLK4-STIL complex and STIL phosphorylation by PLK4, thus inhibiting untimely onset of centriole biogenesis. After CDK1-CyclinB inactivation upon mitotic exit, PLK4 can bind and phosphorylate STIL in G1, allowing pro-centriole assembly in the subsequent S phase. Our work shows that complementary mechanisms, such as mother-daughter centriole proximity and CDK1-CyclinB interaction with centriolar components, ensure that centriole biogenesis occurs once and only once per cell cycle, raising parallels to the cell-cycle regulation of DNA replication and centromere formation.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Centriolos/fisiología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Proteína Quinasa CDC2/genética , Ciclo Celular/fisiología , Clonación Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Xenopus
5.
Methods Cell Biol ; 129: 19-36, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26175431

RESUMEN

The ability to rapidly and specifically modify the genome of mammalian cells has been a long-term goal of biomedical researchers. Recently, the clustered, regularly interspaced, short palindromic repeats (CRISPR)/Cas9 system from bacteria has been exploited for genome engineering in human cells. The CRISPR system directs the RNA-guided Cas9 nuclease to a specific genomic locus to induce a DNA double-strand break that may be subsequently repaired by homology-directed repair using an exogenous DNA repair template. Here we describe a protocol using CRISPR/Cas9 to achieve bi-allelic insertion of a point mutation in human cells. Using this method, homozygous clonal cell lines can be constructed in 5-6 weeks. This method can also be adapted to insert larger DNA elements, such as fluorescent proteins and degrons, at defined genomic locations. CRISPR/Cas9 genome engineering offers exciting applications in both basic science and translational research.


Asunto(s)
Proteínas Bacterianas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Endonucleasas/genética , Proteínas Serina-Treonina Quinasas/genética , Sustitución de Aminoácidos , Secuencia de Bases , Proteína 9 Asociada a CRISPR , Células Cultivadas , Escherichia coli , Genoma Humano , Humanos , Datos de Secuencia Molecular , Mutación Puntual
6.
J Cell Biol ; 209(6): 863-78, 2015 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-26101219

RESUMEN

Centriole duplication occurs once per cell cycle in order to maintain control of centrosome number and ensure genome integrity. Polo-like kinase 4 (Plk4) is a master regulator of centriole biogenesis, but how its activity is regulated to control centriole assembly is unclear. Here we used gene editing in human cells to create a chemical genetic system in which endogenous Plk4 can be specifically inhibited using a cell-permeable ATP analogue. Using this system, we demonstrate that STIL localization to the centriole requires continued Plk4 activity. Most importantly, we show that direct binding of STIL activates Plk4 by promoting self-phosphorylation of the activation loop of the kinase. Plk4 subsequently phosphorylates STIL to promote centriole assembly in two steps. First, Plk4 activity promotes the recruitment of STIL to the centriole. Second, Plk4 primes the direct binding of STIL to the C terminus of SAS6. Our findings uncover a molecular basis for the timing of Plk4 activation through the cell cycle-regulated accumulation of STIL.


Asunto(s)
Centriolos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Adenosina Trifosfato/análogos & derivados , Anticuerpos/inmunología , Sitios de Unión/genética , Sitios de Unión/inmunología , Puntos de Control del Ciclo Celular , División Celular , Línea Celular , Activación Enzimática , Células HEK293 , Humanos , Indazoles/farmacología , Indoles/farmacología , Péptidos y Proteínas de Señalización Intracelular/genética , Fosforilación , Unión Proteica , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Estructura Terciaria de Proteína , Edición de ARN , Interferencia de ARN , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...