Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cells ; 11(14)2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35883691

RESUMEN

Spinocerebellar ataxia type 1 (SCA1) is an intractable progressive neurodegenerative disease that leads to a range of movement and motor defects and is eventually lethal. Purkinje cells (PC) are typically the first to show signs of degeneration. SCA1 is caused by an expansion of the polyglutamine tract in the ATXN1 gene and the subsequent buildup of mutant Ataxin-1 protein. In addition to its toxicity, mutant Ataxin-1 protein interferes with gene expression and signal transduction in cells. Recently, it is evident that ATXN1 is not only expressed in neurons but also in glia, however, it is unclear the extent to which either contributes to the overall pathology of SCA1. There are various ways to model SCA1 in mice. Here, functional deficits at cerebellar synapses were investigated in two mouse models of SCA1 in which mutant ATXN1 is either nonspecifically expressed in all cell types of the cerebellum (SCA1 knock-in (KI)), or specifically in Bergmann glia with lentiviral vectors expressing mutant ATXN1 under the control of the astrocyte-specific GFAP promoter. We report impairment of motor performance in both SCA1 models. In both cases, prominent signs of astrocytosis were found using immunohistochemistry. Electrophysiological experiments revealed alteration of presynaptic plasticity at synapses between parallel fibers and PCs, and climbing fibers and PCs in SCA1 KI mice, which is not observed in animals expressing mutant ATXN1 solely in Bergmann glia. In contrast, short- and long-term synaptic plasticity was affected in both SCA1 KI mice and glia-targeted SCA1 mice. Thus, non-neuronal mechanisms may underlie some aspects of SCA1 pathology in the cerebellum. By combining the outcomes of our current work with our previous data from the B05 SCA1 model, we further our understanding of the mechanisms of SCA1.


Asunto(s)
Ataxias Espinocerebelosas , Animales , Ataxina-1/genética , Ataxina-1/metabolismo , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Plasticidad Neuronal , Células de Purkinje , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/patología
2.
Brain Sci ; 12(4)2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35448027

RESUMEN

Memantine is an FDA approved drug for the treatment of Alzheimer's disease. It reduces neurodegeneration in the hippocampus and cerebral cortex through the inhibition of extrasynaptic NMDA receptors in patients and mouse models. Potentially, it could prevent neurodegeneration in other brain areas and caused by other diseases. We previously used memantine to prevent functional damage and to retain morphology of cerebellar neurons and Bergmann glia in an optogenetic mouse model of spinocerebellar ataxia type-1 (SCA1). However, before suggesting wider use of memantine in clinics, its side effects must be carefully evaluated. Blockers of NMDA receptors are controversial in terms of their effects on anxiety. Here, we investigated the effects of chronic application of memantine over 9 weeks to CD1 mice and examined rotarod performance and anxiety-related behaviors. Memantine-treated mice exhibited an inability to adapt to anxiety-causing conditions which strongly affected their rotarod performance. A tail suspension test revealed increased signs of behavioral despair. These data provide further insights into the potential deleterious effects of memantine which may result from the lack of adaptation to novel, stressful conditions. This effect of memantine may affect the results of tests used to assess motor performance and should be considered during clinical trials of memantine in patients.

3.
Antioxidants (Basel) ; 10(7)2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34356354

RESUMEN

This study reveals that fossil shungite samples exhibit antioxidant activity, can reduce oxidized components, and bind to free radicals. A sample of Sh20 (size fraction-20 µm) (1.30 mg equivalents of ascorbic acid/g of shungite; 3.46 mg equivalents of trolox/g of shungite; 0.99 mg equivalents of quercetin/g of shungite) had the maximal activity according to the amperometric method. The obtained data indicate that shungite has antioxidant properties, but these are approximately 1000 times less pronounced than those of quercetin. A ShT20 sample (size fraction-20 µm + heat treatment) was found to have the highest antioxidant activity against the 2,2-diphenyl-1-picrylhydrazyl radical and cytotoxicity. Further studies, including the optimization of the antioxidant extraction conditions of shungite, and the analysis of the qualitative and quantitative composition of the obtained extracts, are required for a more accurate interpretation of the results. Shungite can be applied as an alternative to activated carbon in water purification, due to its absorption, catalytic, antioxidant, regenerating, and antibacterial properties, as well as its high environmental safety and relatively low cost. It is possible to identify new structural forms of carbon within, and other valuable properties of, shungite substance, which will make it possible to create effective technologies for the practical use of shungite rocks, particularly in the production of fullerenes and other carbon nanoclusters.

4.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-34360588

RESUMEN

Spinocerebellar ataxias are a family of fatal inherited diseases affecting the brain. Although specific mutated proteins are different, they may have a common pathogenetic mechanism, such as insufficient glutamate clearance. This function fails in reactive glia, leading to excitotoxicity and overactivation of NMDA receptors. Therefore, NMDA receptor blockers could be considered for the management of excitotoxicity. One such drug, memantine, currently used for the treatment of Alzheimer's disease, could potentially be used for the treatment of other forms of neurodegeneration, for example, spinocerebellar ataxias (SCA). We previously demonstrated close parallels between optogenetically induced cerebellar degeneration and SCA1. Here we induced reactive transformation of cerebellar Bergmann glia (BG) using this novel optogenetic approach and tested whether memantine could counteract changes in BG and Purkinje cell (PC) morphology and expression of the main glial glutamate transporter-excitatory amino acid transporter 1 (EAAT1). Reactive BG induced by chronic optogenetic stimulation presented increased GFAP immunoreactivity, increased thickness and decreased length of its processes. Oral memantine (~90 mg/kg/day for 4 days) prevented thickening of the processes (1.57 to 1.81 vs. 1.62 µm) and strongly antagonized light-induced reduction in their average length (186.0 to 150.8 vs. 171.9 µm). Memantine also prevented the loss of the key glial glutamate transporter EAAT1 on BG. Finally, memantine reduced the loss of PC (4.2 ± 0.2 to 3.2 ± 0.2 vs. 4.1 ± 0.3 cells per 100 µm of the PC layer). These results identify memantine as potential neuroprotective therapeutics for cerebellar ataxias.


Asunto(s)
Dopaminérgicos/farmacología , Memantina/farmacología , Enfermedades Neurodegenerativas/prevención & control , Neuroglía/efectos de los fármacos , Optogenética/efectos adversos , Sustancias Protectoras/farmacología , Células de Purkinje/efectos de los fármacos , Animales , Modelos Animales de Enfermedad , Ratones , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/patología , Neuroglía/patología , Células de Purkinje/patología
5.
Neurobiol Dis ; 154: 105340, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33753288

RESUMEN

Bergmann glia (BG) are highly specialized radial astrocytes of the cerebellar cortex, which play a key role in the uptake of synaptic glutamate via the excitatory amino acid transporter EAAT1. Multiple lines of evidence suggest that in cerebellar neurodegenerative diseases reactive BG has a negative impact on neuronal function and survival through compromised EAAT activity. A family of such diseases are those caused by expansion of CAG repeats in genes of the ataxin family, resulting in spinocerebellar ataxias (SCA). We investigated the contribution of BG to the pathogenesis of cerebellar neurodegeneration in a model of SCA1, which was induced by expression of a polyglutamine mutant of ataxin-1 (ATXN1[Q85]) in BG specifically. We compared the outcomes with a novel model where we triggered excitotoxicity by a chronic optogenetic activation of BG with channelrhodopsin-2 (ChR2). In both cases we detected evidence of reduced glutamate uptake manifested by prolongation of excitatory postsynaptic currents in Purkinje cells which is consistent with documented reduction of expression and/or function of EAAT1. In both models we detected astroglyosis and Purkinje cells atrophy. Finally, the same pattern was detected in a knock-in mouse which expresses a polyglutamine mutant ataxin-1 ATXN1[Q154] in a non-cell-selective manner. Our results suggest that ATXN1[Q85] and ChR2-induced insult targeted to BG closely mimics SCA1 pathology, where excessive glutamate signaling appears to be a common feature likely being an important contributor to cerebellar neurodegeneration.


Asunto(s)
Ataxina-1/biosíntesis , Transportador 1 de Aminoácidos Excitadores/antagonistas & inhibidores , Transportador 1 de Aminoácidos Excitadores/biosíntesis , Neuroglía/metabolismo , Optogenética/efectos adversos , Células de Purkinje/metabolismo , Animales , Ataxina-1/genética , Muerte Celular/fisiología , Transportador 1 de Aminoácidos Excitadores/genética , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuroglía/patología , Estimulación Luminosa/efectos adversos , Células de Purkinje/patología
6.
Cancers (Basel) ; 12(12)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322507

RESUMEN

In this review, we scrutinize the idea of using viral vectors either as cytotoxic agents or gene delivery tools for treatment of glioblastoma multiforme (GBM) in light of the experience that our laboratory has accumulated over ~20 years when using similar vectors in experimental neuroscience. We review molecular strategies and current clinical trials and argue that approaches which are based on targeting a specific biochemical pathway or a characteristic mutation are inherently prone to failure because of the high genomic instability and clonal selection characteristics of GBM. For the same reasons, attempts to develop a viral system which selectively transduces only GBM cells are also unlikely to be universally successful. One of the common gene therapy approaches is to use cytotoxic viruses which replicate and cause preferential lysis of the GBM cells. This strategy, in addition to its reliance on the specific biochemical makeup of the GBM cells, bears a risk of necrotic cell death accompanied by release of large quantities of pro-inflammatory molecules. On the other hand, engaging the immune system in the anti-GBM response seems to be a potential avenue to explore further. We suggest that a plausible strategy is to focus on viral vectors which efficiently transduce brain cells via a non-selective, ubiquitous mechanism and which target (ideally irreversibly) processes that are critical only for dividing tumor cells and are dispensable for quiescent brain cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA