Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(10)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38791402

RESUMEN

Alkaloids are natural compounds useful as scaffolds for discovering new bioactive molecules. This study utilized alkaloid gramine to synthesize two groups of C3-substituted indole derivatives, which were either functionalized at N1 or not. The compounds were characterized by spectroscopic methods. The protective effects of the new compounds against in vitro oxidative hemolysis induced by standard oxidant 2,2'-azobis(2-amidinopropane dihydro chloride (AAPH) on human erythrocytes as a cell model were investigated. Additionally, the compounds were screened for antimicrobial activity. The results indicated that most of the indole derivatives devoid of the N1 substitution exhibited strong cytoprotective properties. The docking studies supported the affinities of selected indole-based ligands as potential antioxidants. Furthermore, the derivatives obtained exhibited potent fungicidal properties. The structures of the eight derivatives possessing indole moiety bridged to the imidazole-, benzimidazole-, thiazole-, benzothiazole-, and 5-methylbenzothiazoline-2-thiones were determined by X-ray diffraction. The C=S bond lengths in the thioamide fragment pointed to the involvement of zwitterionic structures of varying contribution. The predominance of zwitterionic mesomers may explain the lack of cytoprotective properties, while steric effects, which limit multiple the hydrogen-bond acceptor properties of a thione sulfur, seem to be responsible for the high hemolytic activity.


Asunto(s)
Eritrocitos , Hemólisis , Indoles , Humanos , Hemólisis/efectos de los fármacos , Indoles/química , Indoles/farmacología , Eritrocitos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Antiinfecciosos/farmacología , Antiinfecciosos/química , Relación Estructura-Actividad , Antioxidantes/farmacología , Antioxidantes/química , Pruebas de Sensibilidad Microbiana , Citoprotección/efectos de los fármacos , Amidinas
2.
J Org Chem ; 88(24): 16719-16734, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-38059841

RESUMEN

New formyl and acetyl derivatives of bile acid propargyl esters and their bioconjugates with modified gramine molecules have been obtained using the click chemistry method to study their hemolytic potency. The structures of all compounds were confirmed by spectral (1H- and 13C NMR and FT-IR) analysis and mass spectrometry (ESI-MS) as well as PM5 semiempirical methods. According to the results, the structural modification of formyl and acetyl bile acid derivatives, leading to the formation of new propargyl esters and indole bioconjugates, reduces their hemolytic activity. According to molecular docking studies, the tested ligands are highly likely to exhibit a similar affinity, as native ligands, for the active sites of specific protein domains (PDB IDs: 2Q85 and 5V5Z). The obtained results may be helpful for the development of selective bile acid bioconjugates as effective antibacterial, antifungal, or antioxidant agents.


Asunto(s)
Ácidos y Sales Biliares , Triazoles , Triazoles/química , Simulación del Acoplamiento Molecular , Espectroscopía Infrarroja por Transformada de Fourier , Antibacterianos/química
3.
Nat Prod Res ; : 1-7, 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752775

RESUMEN

A series of indole-1,4-disubstituted-1,2,3-triazole conjugates were synthesised by click chemistry. The haemolytic properties and cytoprotective activity of all the newly synthesised indole-triazole conjugates were tested in vitro. In addition, molecular docking was performed in silico for the selected conjugates to determine their antibacterial and antifungal properties. The results indicate that indole-triazole derivatives effectively protect human erythrocytes against free radical-induced haemolysis in a structure-dependent manner and that bis-indole-bis-triazole derivatives with alkyl linkers are excellent cytoprotective agents against oxidative haemolysis. The tested series of indole-1,4-disubstituted-1,2,3-triazole conjugates may have an affinity for the active sites of specific protein domains (PDB IDs: 2Q85 and 5V5Z) according to molecular docking studies.

4.
Sci Rep ; 13(1): 13426, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591918

RESUMEN

Tetramethylalloxazines (TMeAll) have been found to have a high quantum yield of singlet oxygen generation when used as photosensitizers. Their electronic structure and transition energies (S0 → Si, S0 → Ti, T1 → Ti) were calculated using DFT and TD-DFT methods and compared to experimental absorption spectra. Generally, TMeAll display an energy diagram similar to other derivatives belonging to the alloxazine class of compounds, namely π,π* transitions are accompanied by closely located n,π* transitions. Photophysical data such as quantum yields of fluorescence, fluorescence lifetimes, and nonradiative rate constants were also studied in methanol (MeOH), acetonitrile (ACN), and 1,2-dichloroethane (DCE). The transient absorption spectra were also analyzed. To assess cytotoxicity of new compounds, a hemolytic assay was performed using human red blood cells (RBC) in vitro. Subsequently, fluorescence lifetime imaging experiments (FLIM) were performed on RBC under physiological and oxidative stress conditions alone or in the presence of TMeAll allowing for pinpointing changes caused by those compounds on the intracellular environment of these cells.

5.
Steroids ; 199: 109282, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37482327

RESUMEN

Six steroid conjugates of bile acids and sterol derivatives have been synthesized using the click chemistry method. The azide-alkyne Huisgen cycloaddition of the propionyl ester of lithocholic, deoxycholic and cholic acid with azide derivatives of cholesterol and cholestanol gave new bile acid-sterol conjugates linked with a 1,2,3-triazole ring. Previously, sterols were converted to bromoacetate substituted derivatives by reaction with bromoacetic acid bromide in anhydrous dichloromethane. These compounds were then converted to azide derivatives using sodium azide. The propiolic esters of lithocholic, deoxycholic and cholic acids were obtained by reaction with propiolic acid in the presence of p-toluenesulfonic acid. Additionally, two of these steroids: methyl 3α-propynoyloxy-12α-acetoxy-5ß-cholane-24-oate and methyl 3α-propynoyloxy-7 α,12α-diacetoxy-5ß-cholane-24-oate were also obtained and characterized for the first time. All conjugates were obtained in good yields using an efficient synthesis method. The structures of all conjugates and the four substrates were confirmed by spectral (1H- and 13C NMR, FT-IR) analysis, mass spectrometry (ESI-MS), and PM5 semiempirical methods. The pharmacotherapeutic potential of the synthesized compounds was estimated based on the in silico Prediction of Activity Spectra for Substances (PASS) method. The cytotoxicity of the compounds was in vitro evaluated in a hemolytic assay using human erythrocytes as a cell model. The in silico and in vitro study results indicate that the selected compound possesses an interesting biological activity and can be considered as potential drug design agent. Additionally, molecular docking was performed for the selected conjugate.


Asunto(s)
Ácidos y Sales Biliares , Fitosteroles , Humanos , Esteroles/farmacología , Esteroles/química , Química Clic , Espectroscopía Infrarroja por Transformada de Fourier , Azidas , Simulación del Acoplamiento Molecular , Ácido Cólico
6.
Int J Mol Sci ; 24(14)2023 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-37511110

RESUMEN

Artificial intelligence (AI) is widely explored nowadays, and it gives opportunities to enhance classical approaches in QSAR studies. The aim of this study was to investigate the cytoprotective activity parameter under oxidative stress conditions for indole-based structures, with the ultimate goal of developing AI models capable of predicting cytoprotective activity and generating novel indole-based compounds. We propose a new AI system capable of suggesting new chemical structures based on some known cytoprotective activity. Cytoprotective activity prediction models, employing algorithms such as random forest, decision tree, support vector machines, K-nearest neighbors, and multiple linear regression, were built, and the best (based on quality measurements) was used to make predictions. Finally, the experimental evaluation of the computational results was undertaken in vitro. The proposed methodology resulted in the creation of a library of new indole-based compounds with assigned cytoprotective activity. The other outcome of this study was the development of a validated predictive model capable of estimating cytoprotective activity to a certain extent using molecular structure as input, supported by experimental confirmation.


Asunto(s)
Algoritmos , Inteligencia Artificial , Estructura Molecular , Estrés Oxidativo , Indoles/farmacología
7.
J Funct Biomater ; 14(7)2023 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-37504853

RESUMEN

Chitosan is a natural and biodegradable polymer with promising potential for biomedical applications. This study concerns the production of chitosan-based materials for future use in the medical industry. Bioactive substances-caffeine and ethanolic propolis extract (EEP)-were incorporated into a chitosan matrix to increase the bioactivity of the obtained films and improve their mechanical properties. Acetic and citric acids were used as solvents in the production of the chitosan-based films. The obtained materials were characterized in terms of their antibacterial and antifungal activities, as well as their mechanical properties, including tensile strength and elongation at break. Moreover, the chemical structures and surface morphologies of the films were assessed. The results showed that the solution consisting of chitosan, citric acid, caffeine, and EEP exhibited an excellent antiradical effect. The activity of this solution (99.13%) was comparable to that of the standard antioxidant Trolox (92.82%). In addition, the film obtained from this solution showed good antibacterial activity, mainly against Escherichia coli and Enterococcus faecalis. The results also revealed that the films produced with citric acid exhibited higher activity levels against pathogenic bacteria than the films obtained with acetic acid. The antimicrobial effect of the chitosan-based films could be further enhanced by adding bioactive additives such as caffeine and propolis extract. The mechanical tests showed that the solvents and additives used affected the mechanical properties of the films obtained. The film produced from chitosan and acetic acid was characterized by the highest tensile strength value (46.95 MPa) while the chitosan-based film with citric acid showed the lowest value (2.28 MPa). The addition of caffeine and propolis to the film based on chitosan with acetic acid decreased its tensile strength while in the case of the chitosan-based film with citric acid, an increase in strength was observed. The obtained results suggested that chitosan films with natural bioactive substances can be a promising alternative to the traditional materials used in the medical industry, for example, as including biodegradable wound dressings or probiotic encapsulation materials.

8.
Molecules ; 28(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37241873

RESUMEN

The ability of the indole-imidazole hybrid ligands to coordinate with the Zn(II) ion and the resulting structures of this new class of coordination compounds were analyzed in order to determine their structural properties and biological functionalities. For this purpose, six novel Zn(II) complexes, [Zn(InIm)2Cl2] (1), [Zn(InMeIm)2Cl2] (2), [Zn(IniPrIm)2Cl2] (3), [Zn(InEtMeIm)2Cl2] (4), [Zn(InPhIm)2Cl2] (5) and [Zn2(InBzIm)2Cl2] (6) (where InIm is 3-((1H-imidazol-1-yl)methyl)-1H-indole), were synthesized by the reactions of ZnCl2 and the corresponding ligand in a 1:2 molar ratio in methanol solvent at an ambient temperature. The structural and spectral characterization of these complexes was performed using NMR, FT-IR and ESI-MS spectrometry and elemental analysis, and the crystal structures of 1-5 were determined using single-crystal X-ray diffraction. Complexes 1-5 form polar supramolecular aggregates by utilizing, for this purpose, the N-H(indole)∙∙∙Cl(chloride) intermolecular hydrogen bonds. The assemblies thus formed differ depending on the distinctive molecular shape, which can be either compact or extended. All complexes were screened for their hemolytic, cytoprotective, antifungal, and antibacterial activities. The results show that the cytoprotective activity of the indole/imidazole ligand significantly increases upon its complexation with ZnCl2 up to a value comparable with the standard antioxidant Trolox, while the response of its substituted analogues is diverse and less pronounced.


Asunto(s)
Complejos de Coordinación , Zinc , Zinc/química , Ligandos , Espectroscopía Infrarroja por Transformada de Fourier , Imidazoles , Indoles , Complejos de Coordinación/farmacología , Complejos de Coordinación/química
9.
Photochem Photobiol Sci ; 22(7): 1655-1671, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36934363

RESUMEN

Flavins are a unique class of compounds that combine the features of singlet oxygen generators and redox-dependent fluorophores. From a broad family of flavin derivatives, deazaalloxazines are significantly underdeveloped from the point of view of photophysical properties. Herein, we report photophysics of 5-deazaalloxazine (1a) in water, acetonitrile, and some other solvents. In particular, triplet excited states of 1a in water and in acetonitrile were investigated using ultraviolet-visible (UV-Vis) transient absorption spectroscopy. The measured triplet lifetimes for 1a were all on the microsecond time scale (≈ 60 µs) in deoxygenated solutions. The quantum yield of S1 → T1 intersystem crossing for 1a in water was 0.43 based on T1 energy transfer from 1a to indicaxanthin (5) acting as acceptor and on comparative actinometric measurements using benzophenone (6). 1a was an efficient photosensitizer for singlet oxygen in aerated solutions, with quantum yields of singlet oxygen in methanol of about 0.76, compared to acetonitrile ~ 0.74, dichloromethane ~ 0.64 and 1,2-dichloroethane ~ 0.54. Significantly lower singlet oxygen quantum yields were obtained in water and deuterated water (Ð¤Δ ~ 0.42 and 0.44, respectively). Human red blood cells (RBC) were used as a cell model to study the antioxidant capacity in vitro and cytotoxic activity of 1a. Fluorescence-lifetime imaging microscopy (FLIM) data were analyzed by fluorescence lifetime parameters and distribution for different parts of the emission spectrum. Comparison of multidimensional fluorescent properties of RBC under physiological-like and oxidative-stress conditions in the presence and absence of 1a suggests its dual activity as probe and singlet-oxygen generator and opens up a pathway for using FLIM to analyze complex intracellular behavior of flavin-like compounds. These new data on structure-property relationship contribute to the body of information required for a rational design of flavin-based tools for future biological and biochemical applications.


Asunto(s)
Fármacos Fotosensibilizantes , Oxígeno Singlete , Humanos , Oxígeno Singlete/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Flavinas , Agua/química , Compuestos Orgánicos , Oxidación-Reducción
10.
Molecules ; 28(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36677766

RESUMEN

In the search for new bioactive compounds, a methodology based on combining two molecules with biological properties into a new hybrid molecule was used to design and synthesize of a series of ten indole derivatives bearing imidazole, benzothiazole-2-thione, or benzoxazole-2-thione moieties at the C-3 position. The compounds were spectroscopically characterized and tested for their antioxidant, antibacterial, and fungicidal activities. The crystal structures were determined for five of them. Comparison of the closely related structures containing either benzothiazole-2-thione or benzoxazole-2-thione clearly shows that the replacement of -S- and -O- ring atoms modify molecular conformation in the crystal, changes intermolecular interactions, and has a severe impact on biological activity. The results indicate that indole-imidazole derivatives with alkyl substituent exhibit an excellent cytoprotective effect against AAPH-induced oxidative hemolysis and act as effective ferrous ion chelating agents. The indole-imidazole compound with chlorine atoms inhibited the growth of fungal strains: Coriolus versicolor (Cv), Poria placenta (Pp), Coniophora puteana (Cp), and Gloeophyllum trabeum (Gt). The indole-imidazole derivatives showed the highest antibacterial activity, for which the largest growth-inhibition zones were noted in M. luteus and P. fluorescens cultures. The obtained results may be helpful in the development of selective indole derivatives as effective antioxidants and/or antimicrobial agents.


Asunto(s)
Antioxidantes , Tionas , Antioxidantes/farmacología , Tionas/química , Benzoxazoles/química , Imidazoles/farmacología , Antibacterianos/química , Benzotiazoles/química , Antifúngicos/farmacología , Indoles/farmacología , Estructura Molecular
11.
Sci Rep ; 13(1): 1785, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36720903

RESUMEN

New structurally diverse groups of C8-substituted caffeine derivatives were synthesized and evaluated for their chemical and biological properties. Mass spectrometry, FT-IR, and NMR characterizations of these derivatives were performed. The cytotoxic activity of the derivatives was estimated in vitro using human red blood cells (RBC) and in silico pharmacokinetic studies. The antioxidant capacity of the compounds was analyzed using a ferrous ion chelating activity assay. The ability of the derivatives to protect RBC from oxidative damage, including the oxidation of hemoglobin to methemoglobin, was assessed using a water-soluble 2,2'-azobis(2-methyl-propionamidine) dihydrochloride (AAPH) as a standard inducer of peroxyl radicals. The level of intracellular oxidative stress was assessed using the fluorescent redox probe 2',7'-dichlorodihydrofluorescein diacetate (DCF-DA). The results indicate that all derivatives are biocompatible compounds with significant antioxidant and cytoprotective potential dependent on their chemical structure. In order to explain the antioxidant and cytoprotective activity of the derivatives, a mechanism of hydrogen atom transfer (HAT), radical adduct formation (RAF), or single electron transfer (SET), as well as the specific interactions of the derivatives with the lipid bilayer of RBC membrane, have been proposed. The results show that selected modifications of the caffeine molecule enhance its antioxidant properties, which expands our knowledge of the structure-activity relationship of caffeine-based cytoprotective compounds.


Asunto(s)
Antioxidantes , Cafeína , Humanos , Antioxidantes/farmacología , Cafeína/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Sustancias Protectoras/farmacología , Eritrocitos , Fármacos Gastrointestinales
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 272: 120985, 2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35152097

RESUMEN

The spectral and photophysical properties of two four-ring alloxazine derivatives, naphtho[2,3-g]pteridine-2,4(1H,3H)-dione (1a) and 1,3-dimethylnaphtho[2,3-g]pteridine-2,4(1H,3H)-dione, (1b) were studied. The propensity of 1a for excited-state proton transfer reactions in the presence of acetic acid as a catalyst was also studied, showing no signature of the reaction occurring. In addition, quenching of 1a fluorescence by acetic acid was investigated. Singlet and triplet states and spectral data for 1a and 1b were calculated using density functional theory TD-DFT at B3LYP/6-31G(d) and UB3LYP levels. Finally, fluorescence lifetime imaging microscopy (FLIM) using 1a and 1b as fluorescence probes was applied to in vitro human red blood cells (RBCs) with and without tert-butyl hydroperoxide (TB) as an oxidising agent. To evaluate and compare the effects of 1a and 1b on the redox properties of RBCs, the fluorescence lifetime, amplitude and fractional intensities were calculated, and phasor plot analysis was performed. The results obtained show the appearance of a new proximal cluster in the phasor fingerprint of RBCs in the presence of 1b and a shorter fluorescence lifetime of RBCs in the presence of 1a.


Asunto(s)
Flavinas , Colorantes Fluorescentes , Microscopía Fluorescente/métodos , Oxidación-Reducción
13.
Molecules ; 28(1)2022 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-36615334

RESUMEN

Propolis is one of the bee products, with multiple biological properties used in numerous applications. The research objective was to determine the chemical composition and biological properties (antibacterial, antifungal, antiviral, antioxidant, and cytoprotective activity) of propolis extracts collected from various regions of Poland. The results indicated that the total content of phenols (116.16-219.41 mg GAE/g EEP) and flavonoids (29.63-106.07 mg QE/g EEP) in propolis extracts depended on their geographic origin. The high content of epicatechin, catechin, pinobanksin, myricetin, and acids: vanillic and syringic in propolis samples was confirmed by chromatographic analysis. Moreover, the presence of caffeic acid phenethyl ester was confirmed in all samples. The origin of propolis also influenced the biological properties of its extracts. The propolis extracts were characterized by moderate DPPH free radical scavenging activity (29.22-35.14%), and relatively low ferrous iron chelating activity (9.33-32.32%). The results indicated also that the propolis extracts showed high activity in the protection of human red blood cells against free radicals generated from 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The extracts exhibited diversified activity against the tested pathogenic bacteria and limited activity against fungal strains. The research of selected propolis extracts showed that only 2 of 5 examined samples showed moderate activity against HPV (human papillomaviruses) and the activity depended on its geographical distribution.


Asunto(s)
Catequina , Própolis , Humanos , Própolis/farmacología , Própolis/química , Polonia , Antioxidantes/farmacología , Antioxidantes/química , Fenoles/química , Antibacterianos , Flavonoides/química
14.
Biomolecules ; 11(9)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34572601

RESUMEN

Li+/Eu3+ dual-doped calcium apatite analogues were fabricated using a microwave stimulated hydrothermal technique. XRPD, FT-IR, micro-Raman spectroscopy, TEM and SAED measurements indicated that obtained apatites are single-phased, crystallize with a hexagonal structure, have similar morphology and nanometric size as well as show red luminescence. Lithium effectively modifies the local symmetry of optical active sites and, thus, affects the emission efficiency. Moreover, the hydrodynamic size and surface charge of the nanoparticles have been extensively studied. The protein adsorption (lysozyme, LSZ; bovine serum albumin, BSA) on the nanoparticle surface depended on the type of cationic dopant (Li+, Eu3+) and anionic group (OH-, Cl-, F-) of the apatite matrix. Interaction with LSZ resulted in a positive zeta potential, and the nanoparticles had the lowest hydrodynamic size in this protein medium. The cytotoxicity assessment was carried out on the human osteosarcoma cell line (U2OS), murine macrophages (J774.E), as well as human red blood cells (RBCs). The studied apatites were not cytotoxic to RBCs and J774.E cells; however, at higher concentrations of nanoparticles, cytotoxicity was observed against the U2OS cell line. No antimicrobial activity was detected against Gram-negative bacteria with one exception for P. aeruginosa treated with Li+-doped fluorapatite.


Asunto(s)
Apatitas/química , Calcio/química , Técnicas de Cultivo de Célula , Europio/química , Litio/química , Nanopartículas/química , Tamaño de la Partícula , Animales , Antibacterianos/farmacología , Muerte Celular , Línea Celular , Coloides/química , Eritrocitos/metabolismo , Hemólisis , Humanos , Hidrodinámica , Iones , Ratones , Muramidasa/metabolismo , Nanopartículas/ultraestructura , Polvos , Unión Proteica , Albúmina Sérica Bovina/metabolismo , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Difracción de Rayos X
15.
Sci Rep ; 11(1): 15425, 2021 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-34326403

RESUMEN

A series of fifteen indole derivatives substituted at the C-3 position were synthesized and characterized. The antioxidant activity of all derivatives was investigated by three in vitro antioxidant assays, and the derivative with pyrrolidinedithiocarbamate moiety was the most active as a radical scavenger and Fe3+-Fe2+ reducer. It can be stated that possible hydrogen and electron transfer mechanism is suggested for the quenching of the free radical. Moreover, the indolyl radical stabilization and the presence of unsubstituted indole nitrogen atom are mandatory for the observed antioxidant activity, which strongly depends on the type of the substituent directly connected to the methylene group at the C-3 position. Human red blood cells (RBC) have been used as a cell model to study derivatives interaction with the cell membrane. Haemolytic activity and RBC shape transformation were observed for certain derivatives in a concentration-dependent manner. However, most of the derivatives at sublytic concentration showed high cytoprotective activity against oxidative haemolysis induced by 2,2'-azobis(2-methylpropionamidine) dihydrochloride (AAPH). The cytoprotective properties of derivatives can be explained mostly due to their interactions with the RBC membrane components. Taking together, theoretical estimations and experimental data confirm the beneficial interactions between the selected C-3 substituted indole derivatives and the RBC membrane under oxidative stress conditions. These results encourage us to further structural optimization of C-3 substituted indole derivatives as potent antioxidant compounds.

16.
ChemMedChem ; 16(10): 1640-1650, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33527762

RESUMEN

Luminescent Ln3+ -doped nanoparticles (NPs) functionalised with the desired organic ligand molecules for haemocompatibility studies were obtained in a one-pot synthesis. Chelated aromatic organic ligands such as isophthalic acid, terephthalic acid, ibuprofen, aspirin, 1,2,4,5-benzenetetracarboxylic acid, 2,6-pyridine dicarboxylic acid and adenosine were applied for surface functionalisation. The modification of the nanoparticles is based on the donor-acceptor character of the ligand-nanoparticle system, which is an alternative to covalent functionalisation by peptide bonding as presented in our recent report. The aromatic groups of selected ligands absorb UV light and transfer their excited-state energy to the dopant Eu3+ ions in LaF3 and SrF2 NPs. Herein, we discuss the structural and spectroscopic characterisation of the NPs and the results of haemocompatibility studies. Flow cytometry analysis of the nanoparticles' membrane-binding is also presented.


Asunto(s)
Eritrocitos/efectos de los fármacos , Europio/farmacología , Fluoruros/farmacología , Lantano/farmacología , Nanopartículas/química , Estroncio/farmacología , Relación Dosis-Respuesta a Droga , Europio/química , Fluoruros/química , Humanos , Lantano/química , Ligandos , Estructura Molecular , Estroncio/química , Relación Estructura-Actividad
17.
Molecules ; 25(18)2020 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-32957629

RESUMEN

Propolis is a natural bee product with various beneficial biological effects. The health-promoting properties of propolis depend on its chemical composition, particularly the presence of phenolic compounds. The aim of this study was to evaluate the relationship between extraction solvent (acetone 100%, ethanol 70% and 96%) and the antifungal, antioxidant, and cytoprotective activity of the extracts obtained from propolis. Concentrations of flavonoids and phenolic acids in the propolis extracts were determined using ultrahigh-performance liquid chromatography. The antioxidant potential of different extracts was assessed on the basis of 2,2-diphenyl-1-picrylhydrazyl (DPPH·) free-radical-scavenging activity, Fe3+-reducing power, and ferrous ion (Fe2+)-chelating activity assays. The ability of the extracts to protect human red blood cell membranes against free-radical-induced damage and their antifungal activity was also determined. The results showed that the concentration of flavonoids in the propolis extracts was dependent on the solvent used in the extraction process and pinocembrin, chrysin, galangin, and coumaric acid were the most abundant phenols. All extracts exhibited high antioxidant potential and significantly protected human erythrocytes against oxidative damage. On the other hand, the antifungal activity of the propolis extracts depended on the solvent used in extraction and the fungal strains tested. It needs to be stressed that, to the best of our knowledge, there is no study relating the effect of solvent used for extraction of Polish propolis to its phenolic profile, and its antifungal, antioxidant, and cytoprotective activity.


Asunto(s)
Antifúngicos/química , Antioxidantes/química , Estrés Oxidativo/efectos de los fármacos , Fenoles/química , Própolis/química , Solventes/química , Acetona/química , Animales , Antifúngicos/farmacología , Antioxidantes/farmacología , Abejas , Membrana Celular/metabolismo , Cromatografía Líquida de Alta Presión , Ácidos Cumáricos/química , Evaluación Preclínica de Medicamentos , Eritrocitos/efectos de los fármacos , Etanol/química , Flavanonas/química , Flavonoides/química , Humanos , Hidroxibenzoatos/química , Extracción Líquido-Líquido
18.
ChemMedChem ; 15(15): 1490-1496, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32510839

RESUMEN

Luminescent lanthanide fluoride core-shell (LaF3 :Tb3+ ,Ce3+ @SiO2 -NH2 ) nanoparticles, with acetylsalicylic acid (aspirin) coated on the surface have been obtained. The synthesized products, which combine the potential located in the silica shell with the luminescent activity of the core, were characterized in detail with the use of luminescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and transmission electron microscopy (TEM) methods. The in vitro effects of the modified luminescent nanoparticles on human red blood cell (RBC) membrane permeability, RBC shape, and sedimentation rate were investigated to assess the hemocompatibility of the obtained compounds. This study demonstrates that LaF3 : Tb3+ 5 %, Ce3+ 10 %@SiO2 -NH2 nanoparticles with acetylsalicylic acid (aspirin) coated on the surface are very good precursors for multifunctional drug-delivery systems or bio-imaging probes that can be used safely in potential biomedical applications.


Asunto(s)
Aspirina/farmacología , Materiales Biocompatibles/farmacología , Fluoruros/farmacología , Hemólisis/efectos de los fármacos , Elementos de la Serie de los Lantanoides/farmacología , Nanopartículas/química , Aspirina/química , Materiales Biocompatibles/química , Permeabilidad de la Membrana Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Fluoruros/química , Humanos , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Mediciones Luminiscentes , Estructura Molecular , Tamaño de la Partícula , Relación Estructura-Actividad , Propiedades de Superficie
19.
Metabolites ; 10(5)2020 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-32413967

RESUMEN

Red blood cells (RBCs) are the most abundant cells in the human blood that have been extensively studied under morphology, ultrastructure, biochemical and molecular functions. Therefore, RBCs are excellent cell models in the study of biologically active compounds like drugs and toxins on the structure and function of the cell membrane. The aim of the present study was to explore erythrocyte ghost's proteome to identify changes occurring under the influence of three bee venom peptides-melittin, tertiapin, and apamin. We conducted preliminary experiments on the erythrocyte ghosts incubated with these peptides at their non-hemolytic concentrations. Such preparations were analyzed using liquid chromatography coupled with tandem mass spectrometry. It was found that when higher concentrations of melittin and apamin were used, fewer proteins were identified. Moreover, the results clearly indicated that apamin demonstrates the greatest influence on the RBCs ghosts proteome. Interestingly, the data also suggest that tertiapin exerted a stabilizing effect on the erythrocyte membrane. The experiments carried out show the great potential of proteomic research in the projects focused on the toxin's properties as membrane active agents. However, to determine the specificity of the effect of selected bee venom peptides on the erythrocyte ghosts, further proteomic research should be focused on the quantitative analysis.

20.
Mater Sci Eng C Mater Biol Appl ; 106: 110295, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31753350

RESUMEN

Hexagonal nanocrystalline powders of the non-doped Ca10(PO4)6(OH)2 as well as activated with Ag+ and Eu3+ ions were synthesized by using different wet chemistry methods. Moreover, the obtained hydroxyapatite was loaded with Ag0, as well as nitroimidazole antimicrobials: metronidazole and tinidazole. The structural properties of the products were analyzed by X-ray diffraction (XRD), scanning (SEM) and transmission (TEM) electron microscopy as well as infrared (IR) and Raman spectroscopy. The photoluminescence properties of the Eu3+ and Ag+ co-doped Ca10(PO4)6(OH)2 were characterized via the PL emission, excitation spectra and the luminescence decay curve. The antimicrobial activity of the obtained materials against Prevotella bivia and Parabacteroides distasonis was studied. The cytotoxicity assessment was carried out on the human osteosarcoma cell line (U2OS) as well as human red blood cells (RBC). The choice of the in vitro model was based on the fact that U2OS is a cancer cell line derived from bone tissue which is rich in apatites that play a pivotal role in the extracellular matrix formation. RBCs are the most abundant blood cells and they are used as a cell model in the study of biocompatibility of new prepared biocompounds with potential medical applications. The obtained multifunctional materials do not exhibit the haemolytic activity, therefore, they could be used as a promising antimicrobial agent and for anaerobic bacteria.


Asunto(s)
Bacteroidetes/efectos de los fármacos , Materiales Biocompatibles/farmacología , Hidroxiapatitas/química , Nanocompuestos/química , Prevotella/efectos de los fármacos , Adsorción , Animales , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Sedimentación Sanguínea/efectos de los fármacos , Bovinos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Europio/química , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Muramidasa/química , Nanocompuestos/toxicidad , Albúmina Sérica Bovina/química , Plata/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...