Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neuron ; 111(3): 372-386.e4, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36413988

RESUMEN

The flexibility of locomotor movements requires an accurate control of their start, duration, and speed. How brainstem circuits encode and convey these locomotor parameters remains unclear. Here, we have combined in vivo calcium imaging, electrophysiology, anatomy, and behavior in adult zebrafish to address these questions. We reveal that the detailed parameters of locomotor movements are encoded by two molecularly, topographically, and functionally segregated glutamatergic neuron subpopulations within the nucleus of the medial longitudinal fasciculus. The start, duration, and changes of locomotion speed are encoded by vGlut2+ neurons, whereas vGlut1+ neurons encode sudden changes to high speed/high amplitude movements. Ablation of vGlut2+ neurons compromised slow-explorative swimming, whereas vGlut1+ neuron ablation impaired fast swimming. Our results provide mechanistic insights into how separate brainstem subpopulations implement flexible locomotor commands. These two brainstem command subpopulations are suitably organized to integrate environmental cues and hence generate flexible swimming movements to match the animal's behavioral needs.


Asunto(s)
Natación , Pez Cebra , Animales , Pez Cebra/fisiología , Médula Espinal/fisiología , Tronco Encefálico/fisiología , Neuronas/fisiología , Locomoción/fisiología
2.
eNeuro ; 6(3)2019.
Artículo en Inglés | MEDLINE | ID: mdl-31152098

RESUMEN

In neural circuits, action potentials (spikes) are conventionally caused by excitatory inputs whereas inhibitory inputs reduce or modulate neuronal excitability. We previously showed that neurons in the superior paraolivary nucleus (SPN) require solely synaptic inhibition to generate their hallmark offset response, a burst of spikes at the end of a sound stimulus, via a post-inhibitory rebound mechanism. In addition SPN neurons receive excitatory inputs, but their functional significance is not yet known. Here we used mice of both sexes to demonstrate that in SPN neurons, the classical roles for excitation and inhibition are switched, with inhibitory inputs driving spike firing and excitatory inputs modulating this response. Hodgkin-Huxley modeling suggests that a slow, NMDA receptor (NMDAR)-mediated excitation would accelerate the offset response. We find corroborating evidence from in vitro and in vivo recordings that lack of excitation prolonged offset-response latencies and rendered them more variable to changing sound intensity levels. Our results reveal an unsuspected function for slow excitation in improving the timing of post-inhibitory rebound firing even when the firing itself does not depend on excitation. This shows the auditory system employs highly specialized mechanisms to encode timing-sensitive features of sound offsets which are crucial for sound-duration encoding and have profound biological importance for encoding the temporal structure of speech.


Asunto(s)
Potenciales de Acción/fisiología , Percepción Auditiva/fisiología , Potenciales Postsinápticos Excitadores , Potenciales Postsinápticos Inhibidores , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Complejo Olivar Superior/fisiología , Estimulación Acústica , Animales , Femenino , Masculino , Ratones Endogámicos C57BL
3.
Nat Neurosci ; 22(2): 317-327, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30598527

RESUMEN

Analysis of entire transparent rodent bodies after clearing could provide holistic biological information in health and disease, but reliable imaging and quantification of fluorescent protein signals deep inside the tissues has remained a challenge. Here, we developed vDISCO, a pressure-driven, nanobody-based whole-body immunolabeling technology to enhance the signal of fluorescent proteins by up to two orders of magnitude. This allowed us to image and quantify subcellular details through bones, skin and highly autofluorescent tissues of intact transparent mice. For the first time, we visualized whole-body neuronal projections in adult mice. We assessed CNS trauma effects in the whole body and found degeneration of peripheral nerve terminals in the torso. Furthermore, vDISCO revealed short vascular connections between skull marrow and brain meninges, which were filled with immune cells upon stroke. Thus, our new approach enables unbiased comprehensive studies of the interactions between the nervous system and the rest of the body.


Asunto(s)
Meninges/diagnóstico por imagen , Neuronas/metabolismo , Cráneo/diagnóstico por imagen , Imagen de Cuerpo Entero/métodos , Animales , Meninges/metabolismo , Ratones , Ratones Transgénicos , Cráneo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...