Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLOS Glob Public Health ; 3(11): e0002395, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37922222

RESUMEN

House improvement is associated with remarkable reductions in indoor mosquito bites and disease incidences, even in typical rural houses. However, its exploitation remains extremely poor in Tanzania and other endemic countries due to limited financial resources. Nevertheless, village community banks (VICOBA), practiced in Tanzania for nearly two decades, have proven to provide financial services to rural communities that would otherwise not be able to get them from formal financial institutions. This study explored the need, opinion, and willingness of VICOBA members to use VICOBA platforms as a source of finance for improving local houses and eventually controlling mosquito-borne diseases. A mixed-methods approach was used in this study, whereby a survey was administered to 150 participants and twelve focus group discussions were done in three villages in Ulanga district, rural Tanzania. The FGDs comprised eight participants each, with equal representation of males and females. The FGD guide was used to probe the opinions of study participants on malaria transmission, housing condition improvements, and financial resources. About 99% of all participants indicated the urgent need to improve their houses to prevent mosquito bites and were willing to utilize VICOBA for improving their houses. In the focus group discussion, the majority of people who participated were also in need of improving their houses. All participants confirmed that they were at the highest risk of getting mosquito-borne diseases, and they were willing to use money that was either saved or borrowed from their VICOBA for housing improvements and vector control. A self-sustaining financial system destined for house improvement and related interventions against malaria and other mosquito-borne diseases is crucial. The community members were willing to use VICOBA as a source of finance for house improvement and disease control; however, there was limited knowledge and sensitization on how they could utilize VICOBA for disease control.

2.
Malar J ; 21(1): 365, 2022 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-36461058

RESUMEN

BACKGROUND: Malaria transmission can be highly heterogeneous between and within localities, and is influenced by factors such as survival and biting frequencies of Anopheles mosquitoes. This study investigated the relationships between the biological age, distance from aquatic habitats and pyrethroid resistance status of Anopheles funestus mosquitoes, which currently dominate malaria transmission in south-east Tanzania. The study also examined how such relationships may influence malaria transmission and control. METHODS: Female An. funestus were collected in houses located 50-100 m, 150-200 m or over 200 m from the nearest known aquatic habitats. The mosquitoes were exposed to 1×, 5× and 10× the diagnostic doses of deltamethrin or permethrin, or to the synergist, piperonyl butoxide (PBO) followed by the pyrethroids, then monitored for 24 h-mortality. Ovaries of exposed and non-exposed mosquitoes were dissected to assess parity as a proxy for biological age. Adults emerging from larval collections in the same villages were tested against the same insecticides at 3-5, 8-11 or 17-20 days old. FINDINGS: Mosquitoes collected nearest to the aquatic habitats (50-100 m) had the lowest mortalities compared to other distances, with a maximum of 51% mortality at 10× permethrin. For the age-synchronized mosquitoes collected as larvae, the insecticide-induced mortality assessed at both the diagnostic and multiplicative doses (1×, 5× and 10×) increased with mosquito age. The highest mortalities at 1× doses were observed among the oldest mosquitoes (17-20 days). At 10× doses, mortalities were 99% (permethrin) and 76% (deltamethrin) among 8-11 day-olds compared to 80% (permethrin) and 58% (deltamethrin) among 3-5 day-olds. Pre-exposure to PBO increased the potency of both pyrethroids. The proportion of parous females was highest among mosquitoes collected farthest from the habitats. CONCLUSION: In this specific setting, older An. funestus and those collected farthest from the aquatic habitats (near the centre of the village) were more susceptible to pyrethroids than the younger ones and those caught nearest to the habitats. These findings suggest that pyrethroid-based interventions may remain at least moderately effective despite widespread pyrethroid-resistance, by killing the older, less-resistant and potentially-infective mosquitoes. Further studies should investigate how and whether these observations could be exploited to optimize malaria control in different settings.


Asunto(s)
Anopheles , Insecticidas , Humanos , Adulto , Animales , Femenino , Permetrina/farmacología , Tanzanía , Larva , Ecosistema , Envejecimiento
3.
Malar J ; 19(1): 408, 2020 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-33176805

RESUMEN

BACKGROUND: Long-lasting insecticide-treated nets (LLINs) and indoor residual spraying (IRS) have greatly reduced malaria transmission in sub-Saharan Africa, but are threatened by insecticide resistance. In south-eastern Tanzania, pyrethroid-resistant Anopheles funestus are now implicated in > 80% of malaria infections, even in villages where the species occurs at lower densities than the other vector, Anopheles arabiensis. This study compared the insecticide resistance phenotypes between the two malaria vectors in an area where pyrethroid-LLINs are widely used. METHODS: The study used the World Health Organization (WHO) assays with 1×, 5× and 10× insecticide doses to assess levels of resistance, followed by synergist bioassays to understand possible mechanisms of the observed resistance phenotypes. The tests involved adult mosquitoes collected from three villages across two districts in south-eastern Tanzania and included four insecticide classes. FINDINGS: At baseline doses (1×), both species were resistant to the two candidate pyrethroids (permethrin and deltamethrin), but susceptible to the organophosphate (pirimiphos-methyl). Anopheles funestus, but not An. arabiensis was also resistant to the carbamate (bendiocarb). Both species were resistant to DDT in all villages except in one village where An. arabiensis was susceptible. Anopheles funestus showed strong resistance to pyrethroids, surviving the 5× and 10× doses, while An. arabiensis reverted to susceptibility at the 5× dose. Pre-exposure to the synergist, piperonyl butoxide (PBO), enhanced the potency of the pyrethroids against both species and resulted in full susceptibility of An. arabiensis (> 98% mortality). However, for An. funestus from two villages, permethrin-associated mortalities after pre-exposure to PBO only exceeded 90% but not 98%. CONCLUSIONS: In south-eastern Tanzania, where An. funestus dominates malaria transmission, the species also has much stronger resistance to pyrethroids than its counterpart, An. arabiensis, and can survive more classes of insecticides. The pyrethroid resistance in both species appears to be mostly metabolic and may be partially addressed using synergists, e.g. PBO. These findings may explain the continued persistence and dominance of An. funestus despite widespread use of pyrethroid-treated LLINs, and inform new intervention choices for such settings. In short and medium-term, these may include PBO-based LLINs or improved IRS with compounds to which the vectors are still susceptible.


Asunto(s)
Anopheles/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Mosquitos Vectores/genética , Fenotipo , Animales , Anopheles/efectos de los fármacos , Mosquiteros Tratados con Insecticida , Control de Mosquitos , Mosquitos Vectores/efectos de los fármacos , Nitrilos/farmacología , Compuestos Organotiofosforados/farmacología , Permetrina/farmacología , Fenilcarbamatos/farmacología , Butóxido de Piperonilo/farmacología , Piretrinas/farmacología , Especificidad de la Especie , Tanzanía
4.
Malar J ; 19(1): 219, 2020 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-32576200

RESUMEN

BACKGROUND: In rural south-eastern Tanzania, Anopheles funestus is a major malaria vector, and has been implicated in nearly 90% of all infective bites. Unfortunately, little is known about the natural ecological requirements and survival strategies of this mosquito species. METHODS: Potential mosquito aquatic habitats were systematically searched along 1000 m transects from the centres of six villages in south-eastern Tanzania. All water bodies were geo-referenced, characterized and examined for presence of Anopheles larvae using standard 350 mLs dippers or 10 L buckets. Larvae were collected for rearing, and the emergent adults identified to confirm habitats containing An. funestus. RESULTS: One hundred and eleven habitats were identified and assessed from the first five villages (all < 300 m altitude). Of these, 36 (32.4%) had An. funestus co-occurring with other mosquito species. Another 47 (42.3%) had other Anopheles species and/or culicines, but not An. funestus, and 28 (25.2%) had no mosquitoes. There were three main habitat types occupied by An. funestus, namely: (a) small spring-fed pools with well-defined perimeters (36.1%), (b) medium-sized natural ponds retaining water most of the year (16.7%), and (c) slow-moving waters along river tributaries (47.2%). The habitats generally had clear waters with emergent surface vegetation, depths > 0.5 m and distances < 100 m from human dwellings. They were permanent or semi-permanent, retaining water most of the year. Water temperatures ranged from 25.2 to 28.8 °C, pH from 6.5 to 6.7, turbidity from 26.6 to 54.8 NTU and total dissolved solids from 60.5 to 80.3 mg/L. In the sixth village (altitude > 400 m), very high densities of An. funestus were found along rivers with slow-moving clear waters and emergent vegetation. CONCLUSION: This study has documented the diversity and key characteristics of aquatic habitats of An. funestus across villages in south-eastern Tanzania, and will form an important basis for further studies to improve malaria control. The observations suggest that An. funestus habitats in the area can indeed be described as fixed, few and findable based on their unique characteristics. Future studies should investigate the potential of targeting these habitats with larviciding or larval source management to complement malaria control efforts in areas dominated by this vector species.


Asunto(s)
Distribución Animal , Anopheles/fisiología , Ecosistema , Mosquitos Vectores/fisiología , Animales , Anopheles/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Malaria/transmisión , Mosquitos Vectores/crecimiento & desarrollo , Tanzanía
5.
Parasit Vectors ; 13(1): 53, 2020 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-32033619

RESUMEN

BACKGROUND: Aedes-borne diseases such as dengue and chikungunya constitute constant threats globally. In Tanzania, these diseases are transmitted by Aedes aegypti, which is widely distributed in urban areas, but whose ecology remains poorly understood in small towns and rural settings. METHODS: A survey of Ae. aegypti aquatic habitats was conducted in and around Ifakara, a fast-growing town in south-eastern Tanzania. The study area was divided into 200 × 200 m search grids, and habitats containing immature Aedes were characterized. Field-collected Ae. aegypti were tested for susceptibility to common public health insecticides (deltamethrin, permethrin, bendiocarb and pirimiphos-methyl) in the dry and rainy seasons. RESULTS: Of 1515 and 1933 aquatic habitats examined in the dry and rainy seasons, 286 and 283 contained Aedes immatures, respectively (container index, CI: 18.9-14.6%). In the 2315 and 2832 houses visited in the dry and rainy seasons, 114 and 186 houses had at least one Aedes-positive habitat, respectively (house index, HI: 4.9-6.6%). The main habitat types included: (i) used vehicle tires and discarded containers; (ii) flowerpots and clay pots; and (iii) holes made by residents on trunks of coconut trees when harvesting the coconuts. Used tires had highest overall abundance of Ae. aegypti immatures, while coconut tree-holes had highest densities per habitat. Aedes aegypti adults were susceptible to all tested insecticides in both seasons, except bendiocarb, against which resistance was observed in the rainy season. CONCLUSIONS: To our knowledge, this is the first study on ecology and insecticide susceptibility of Ae. aegypti in Ifakara area, and will provide a basis for future studies on its pathogen transmission activities and control. The high infestation levels observed indicate significant risk of Aedes-borne diseases, requiring immediate action to prevent potential outbreaks in the area. While used tires, discarded containers and flowerpots are key habitats for Ae. aegypti, this study also identified coconut harvesting as an important risk factor, and the associated tree-holes as potential targets for Aedes control. Since Ae. aegypti mosquitoes in the area are still susceptible to most insecticides, effective control could be achieved by combining environmental management, preferably involving communities, habitat removal and insecticide spraying.


Asunto(s)
Aedes , Distribución Animal , Ecosistema , Insecticidas , Aedes/efectos de los fármacos , Animales , Fiebre Chikungunya/transmisión , Ciudades , Enfermedades Transmisibles/transmisión , Dengue/transmisión , Insectos Vectores/efectos de los fármacos , Insecticidas/farmacología , Población Rural , Estaciones del Año , Tanzanía
6.
Malar J ; 19(1): 22, 2020 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941508

RESUMEN

BACKGROUND: Malaria control in Africa relies extensively on indoor residual spraying (IRS) and insecticide-treated nets (ITNs). IRS typically targets mosquitoes resting on walls, and in few cases, roofs and ceilings, using contact insecticides. Unfortunately, little attention is paid to where malaria vectors actually rest indoors, and how such knowledge could be used to improve IRS. This study investigated preferred resting surfaces of two major malaria vectors, Anopheles funestus and Anopheles arabiensis, inside four common house types in rural south-eastern Tanzania. METHODS: The assessment was done inside 80 houses including: 20 with thatched roofs and mud walls, 20 with thatched roofs and un-plastered brick walls, 20 with metal roofs and un-plastered brick walls, and 20 with metal roofs and plastered brick walls, across four villages. In each house, resting mosquitoes were sampled in mornings (6 a.m.-8 a.m.), evenings (6 p.m.-8 p.m.) and at night (11 p.m.-12.00 a.m.) using Prokopack aspirators from multiple surfaces (walls, undersides of roofs, floors, furniture, utensils, clothing, curtains and bed nets). RESULTS: Overall, only 26% of An. funestus and 18% of An. arabiensis were found on walls. In grass-thatched houses, 33-55% of An. funestus and 43-50% of An. arabiensis rested under roofs, while in metal-roofed houses, only 16-20% of An. funestus and 8-30% of An. arabiensis rested under roofs. Considering all data together, approximately 40% of mosquitoes rested on surfaces not typically targeted by IRS, i.e. floors, furniture, utensils, clothing and bed nets. These proportions were particularly high in metal-roofed houses (47-53% of An. funestus; 60-66% of An. arabiensis). CONCLUSION: While IRS typically uses contact insecticides to target adult mosquitoes on walls, and occasionally roofs and ceilings, significant proportions of vectors rest on surfaces not usually sprayed. This gap exceeds one-third of malaria mosquitoes in grass-thatched houses, and can reach two-thirds in metal-roofed houses. Where field operations exclude roofs during IRS, the gaps can be much greater. In conclusion, there is need for locally-obtained data on mosquito resting behaviours and how these influence the overall impact and costs of IRS. This study also emphasizes the need for alternative approaches, e.g. house screening, which broadly tackle mosquitoes beyond areas reachable by IRS and ITNs.


Asunto(s)
Anopheles/fisiología , Vivienda/clasificación , Malaria/prevención & control , Mosquitos Vectores/fisiología , Población Rural , Animales , Anopheles/clasificación , Anopheles/parasitología , Femenino , Humanos , Mosquiteros Tratados con Insecticida/clasificación , Malaria/transmisión , Control de Mosquitos/métodos , Control de Mosquitos/normas , Mosquitos Vectores/parasitología , Proteínas Protozoarias/aislamiento & purificación , Glándulas Salivales/química , Glándulas Salivales/parasitología , Tanzanía , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...