Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 9(3)2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-32244853

RESUMEN

Olive is one of the oldest cultivated species in the Mediterranean Basin, including Tunisia, where it has a wide diversity, with more than 200 cultivars, of both wild and feral forms. Many minor cultivars are still present in marginal areas of Tunisia, where they are maintained by farmers in small local groves, but they are poorly characterized and evaluated. In order to recover this neglected germplasm, surveys were conducted in different areas, and 31 genotypes were collected, molecularly characterized with 12 nuclear microsatellite (simple sequence repeat (SSR)) markers, and compared with 26 reference cultivars present in the Tunisian National Olive collection. The analysis revealed an overall high genetic diversity of this olive's germplasm, but also discovered the presence of synonymies and homonymies among the commercialized varieties. The structure analysis showed the presence of different gene pools in the analyzed germplasm. In particular, the marginal germplasm from Ras Jbal and Azmour is characterized by gene pools not present in commercial (Nurseries) varieties, pointing out the very narrow genetic base of the commercialized olive material in Tunisia, and the need to broaden it to avoid the risk of genetic erosion of this species in this country.

2.
Food Chem ; 203: 548-558, 2016 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26948650

RESUMEN

The distinctive aroma of virgin olive oil is mainly attributed to its volatile profile including components responsible for positive attributes and others for sensory defects resulting from chemical oxidation and exogenous enzymes. For this reason, the evolution of volatile compounds from Chétoui and Arbequina virgin olive oils during olive ripening and storage (at 4 and 25 °C during 4 weeks) was investigated. The profile of volatile phenols during olive storage was also studied. Quantitative differences in the volatile compounds during olive storage at 4 and 25 °C according to olive cultivar was determined. Concerning the volatile phenols, the Arbequina olives were the most affected by high storage temperature, as the formation of these compounds, especially 4-ethyl and 4-vinyl derivatives of phenol and guaiacol were more noticeable in Arbequina oils extracted from stored fruits at 25 °C.


Asunto(s)
Almacenamiento de Alimentos , Frutas/química , Olea/química , Aceite de Oliva/análisis , Compuestos Orgánicos Volátiles/análisis , Frutas/crecimiento & desarrollo , Humanos , Odorantes/análisis , Olea/crecimiento & desarrollo , Aceite de Oliva/química , Oxidación-Reducción , Fenoles/análisis
3.
Int J Biometeorol ; 59(5): 629-41, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25060840

RESUMEN

The aim of the present study was to develop pheno-meteorological models to explain and forecast the main olive flowering phenological phases within the Mediterranean basin, across a latitudinal and longitudinal gradient that includes Tunisia, Spain, and Italy. To analyze the aerobiological sampling points, study periods from 13 years (1999-2011) to 19 years (1993-2011) were used. The forecasting models were constructed using partial least-squares regression, considering both the flowering start and full-flowering dates as dependent variables. The percentages of variance explained by the full-flowering models (mean 84 %) were greater than those explained by the flowering start models (mean 77 %). Moreover, given the time lag from the North African areas to the central Mediterranean areas in the main olive flowering dates, the regional full-flowering predictive models are proposed as the most useful to improve the knowledge of the influence of climate on the olive tree floral phenology. The meteorological parameters related to the previous autumn and both the winter and the spring seasons, and above all the temperatures, regulate the reproductive phenology of olive trees in the Mediterranean area. The mean anticipation of flowering start and full flowering for the future period from 2081 to 2100 was estimated at 10 and 12 days, respectively. One question can be raised: Will the olive trees located in the warmest areas be northward displaced or will they be able to adapt their physiology in response to the higher temperatures? The present study can be considered as an approach to design more detailed future bioclimate research.


Asunto(s)
Clima , Ecosistema , Flores/crecimiento & desarrollo , Modelos Estadísticos , Olea/crecimiento & desarrollo , Estaciones del Año , Aclimatación/fisiología , Simulación por Computador , Región Mediterránea , España , Análisis Espacio-Temporal , Temperatura
4.
Photosynth Res ; 123(2): 141-55, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25344757

RESUMEN

In the field, leaves may face very different light intensities within the tree canopy. Leaves usually respond with light-induced morphological and photosynthetic changes, in a phenomenon known as phenotypic plasticity. Canopy light distribution, leaf anatomy, gas exchange, chlorophyll fluorescence, and pigment composition were investigated in an olive (Olea europaea, cvs. Arbequina and Arbosana) orchard planted with a high-density system (1,250 trees ha(-1)). Sampling was made from three canopy zones: a lower canopy (<1 m), a central one (1-2 m), and an upper one (>2 m). Light interception decreased significantly in the lower canopy when compared to the central and top ones. Leaf angle increased and photosynthetic rates and non-photochemical quenching (NPQ) decreased significantly and progressively from the upper canopy to the central and the lower canopies. The largest leaf areas were found in the lower canopy, especially in the cultivar Arbequina. The palisade and spongy parenchyma were reduced in thickness in the lower canopy when compared to the upper one, in the former due to a decrease in the number of cell layers from three to two (clearly distinguishable in the light and fluorescence microscopy images). In both cultivars, the concentration of violaxanthin-cycle pigments and ß-carotene was higher in the upper than in the lower canopy. Furthermore, the de-epoxidized forms zeaxanthin and antheraxanthin increased significantly in those leaves from the upper canopy, in parallel to the NPQ increases. In conclusion, olive leaves react with morphological and photosynthetic changes to within-crown light gradients. These results strengthen the idea of olive trees as "modular organisms" that adjust the modules morphology and physiology in response to light intensity.


Asunto(s)
Olea/fisiología , Fotosíntesis , Clorofila/metabolismo , Fluorescencia , Luz , Olea/anatomía & histología , Olea/efectos de la radiación , Fenotipo , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación
5.
Environ Sci Process Impacts ; 16(7): 1716-25, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24824947

RESUMEN

The study of microorganisms and biological particulate matter that transport passively through air is very important for an understanding of the real quality of air. Such monitoring is essential in several specific areas, such as public health, allergy studies, agronomy, indoor and outdoor conservation, and climate-change impact studies. Choosing the suitable monitoring method is an important step in aerobiological studies, so as to obtain reliable airborne data. In this study, we compare olive pollen data from two of the main air traps used in aerobiology, the Hirst and Cour air samplers, at three Tunisian sampling points, for 2009 to 2011. Moreover, a downscaling method to perform daily Cour air sampler data estimates is designed. While Hirst air samplers can offer daily, and even bi-hourly data, Cour air samplers provide data for longer discrete sampling periods, which limits their usefulness for daily monitoring. Higher quantities of olive pollen capture were generally detected for the Hirst air sampler, and a downscaling method that is developed in this study is used to model these differences. The effectiveness of this downscaling method is demonstrated, which allows the potential use of Cour air sampler data series. These results improve the information that new Cour data and, importantly, historical Cour databases can provide for the understanding of phenological dates, airborne pollination curves, and allergenicity levels of air.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Alérgenos/análisis , Monitoreo del Ambiente/métodos , Polen , Material Particulado/análisis , Túnez
6.
Int J Biometeorol ; 58(5): 867-76, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23591696

RESUMEN

The main characteristics of the heat accumulation period and the possible existence of different types of biological response to the environment in different populations of olive through the Mediterranean region have been evaluated. Chilling curves to determine the start date of the heat accumulation period were constructed and evaluated. The results allow us to conclude that the northern olive populations have the greatest heat requirements for the development of their floral buds, and they need a period of time longer than olives in others areas to completely satisfy their biothermic requirements. The olive trees located in the warmest winter areas have a faster transition from endogenous to exogenous inhibition once the peak of chilling is met, and they show more rapid floral development. The lower heat requirements are due to better adaptation to warmer regions. Both the threshold temperature and the peak of flowering date are closely related to latitude. Different types of biological responses of olives to the environment were found. The adaptive capacity shown by the olive tree should be considered as a useful tool with which to study the effects of global climatic change on agro-ecosystems.


Asunto(s)
Olea/crecimiento & desarrollo , Aclimatación , Clima , Calor , Italia , Olea/fisiología , España , Túnez
7.
C R Biol ; 330(2): 135-42, 2007 Feb.
Artículo en Francés | MEDLINE | ID: mdl-17303540

RESUMEN

This study aims at characterization four cultivars of the olive trees, Chétoui, Chemlali, Gerboui, and Chaïbi, cultivated in three different geographical locations, from pomological and technological points of view. The pomological characters of the fruit are influenced by the geographical location. Each individual of the same cultivar expresses different pomological characters. We have noted a significant fluctuation of the flush percentage in three Chaïbi individuals according to their geographical site; it varies from 49.06 to 82.19%. The three Gerboui individuals showed a significant variability of the fruit weight (from 1.13 to 3.17 g). Fluctuations of olive oil contents were also observed. Several fatty acid compositions showed some variation. The oleic and linoleic acid contents varied among individuals from Chétoui and Chaïbi. Moreover, the individuals of the cultivar Chemlali showed a variation of their content in palmitic and palmitoleic acids. Indeed, each individual of a cultivar showed its own potentialities, which are reflected by its pomological and technological characters. According to their geographical location, individuals from a given cultivar displayed diverse potentialities.


Asunto(s)
Geografía , Olea , Agricultura , Ácidos Grasos/análisis , Frutas/química , Aceite de Oliva , Aceites de Plantas/química , Túnez
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA