Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chemosphere ; 307(Pt 2): 135732, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35872057

RESUMEN

Geogenic contamination of groundwater is frequently associated with gold mining activities and related to drinking water quality problems worldwide. In Tanzania, elevated levels of trace elements (TEs) have been reported in drinking water sources within the Lake Victoria Basin, posing a serious health risk to communities. The present study aims to assess the groundwater quality with a focus on the concentration levels of geogenic contaminants in groundwater around the Lake Victoria goldfields in Geita and Mara districts. The water samples were collected from community drinking water sources and were analysed for physiochemical parameters (pH, EC, Eh), major ions, and trace elements. The analysed major ions included Na+, K+, Ca2+, Mg2+, SO42-, HCO3- and Cl- whereas the trace elements were As, Al, Li, Ba, B, Ti, V, U, Zr, Sr, Si, Mn Mo, Fe, Ni, Zn, Cr, Pb, Cd, and V. The present study revealed that the concentration levels of the major ions were mostly within the World Health Organization (WHO) drinking water standards in the following order of their relative abundance; for cations, Ca2+∼Na+>Mg2+>K+ and for anions was HCO3- > SO42- > NO3-, Cl- > PO43-. Statistical and geochemical modelling software such as 'R Studio', IBM SPSS, geochemical workbench, visual MINTEQ were used to understand the groundwater chemistry and evaluate its suitability for drinking purpose. The concentration of As in groundwater sources varies between below detection limit (bdl) and 300 µg/L, with highest levels in streams followed by shallow wells and boreholes. In approximately 48% of the analysed samples, As concentration exceeded the WHO drinking water guideline and Tanzania Bureau of Standards (TBS) guideline for drinking water value of 10 µg/L. The concentration of the analyzed TEs and mean values of physicochemical parameters were below the guideline limits based on WHO and TBS standards. The Canadian Council of Ministries of the Environment Water Quality Index (CCME WQI) shows that the overall water quality is acceptable with minimum threats of deviation from natural conditions. We recommend further geochemical exploration and the periodic risk assessment of groundwater in mining areas where high levels of As were recorded.


Asunto(s)
Agua Potable , Agua Subterránea , Oligoelementos , Contaminantes Químicos del Agua , Cadmio/análisis , Canadá , Agua Potable/análisis , Monitoreo del Ambiente , Oro/análisis , Agua Subterránea/análisis , Lagos/análisis , Plomo/análisis , Tanzanía , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
2.
Sci Total Environ ; 810: 152153, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34864037

RESUMEN

Groundwater contamination from geogenic sources poses challenges to many countries, especially in the developing world. In Tanzania, the elevated fluoride (F-) concentration and related chronic fluorosis associated with drinking F- rich water are common in the East African Rift Valley regions. In these regions, F- concentration is space dependence which poses much uncertainty when targeting safe source for drinking water. To account for the spatial effects, integrated exploratory spatial data analysis, regression analysis, and geographical information systems tools were used to associate the distribution of F- in groundwater with spatial variability in terrain slopes, volcanic deposits, recharge water/vadose materials contact time, groundwater resource development for irrigated agriculture in the Sanya alluvial plain (SAP) of northern Tanzania. The F- concentration increased with distance from steep slopes where the high scale of variation was recorded in the gentle sloping and flat grounds within the SAP. The areas covered with debris avalanche deposits in the gentle sloping and flat grounds correlated with the high spatial variability in F- concentration. Furthermore, the high spatial variability in F- correlated positively with depth to groundwater in the Sanya flood plain. In contrast, a negative correlation between F- and borehole depth was observed. The current irrigation practices in the Sanya alluvial plain contribute to the high spatial variability in F- concentration, particularly within the perched shallow aquifers in the volcanic river valleys. The findings of this study are important to the overall chain of safe water supply process in historically fluorotic regions. They provide new insights into the well-known F- contamination through the use of modern geospatial methods and technologies. In Tanzania's context, the findings can improve the current process of drilling permits issuance by the authority and guide the local borehole drillers to be precise in siting safe source for drinking water.


Asunto(s)
Agua Subterránea , Contaminantes Químicos del Agua , Monitoreo del Ambiente , Fluoruros/análisis , Tanzanía , Contaminantes Químicos del Agua/análisis
3.
Sci Total Environ ; 735: 139584, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32485458

RESUMEN

Safe drinking water supply systems in naturally contaminated hydrogeological environments require precise geoinformation on contamination hotspots. Spatial statistical methods and GIS were used to study fluoride occurrence in groundwater and identify significant spatial patterns using fluoride concentrations. The global and local Morans I indices were used. While the significant positive global Morans I index indicated spatial structure in fluoride occurrence, the significant spatial clusters were identified using local Morans I index and mapped at p-value of 0.05. The spatial clusters demonstrated patterns of drinking water sources with fluoride concentrations below or above WHO guideline and Tanzania standard for drinking water and were considered as 'regional fluoride cool spots' and 'regional fluoride contamination hotspots', respectively. Two regional fluoride contamination hotspots were identified and mapped around the Stratovolcano Mountains in the north-east and south-west of the study area; and along the Neogene Quaternary volcanic formations and Palaeo-Neoproterozoic East African Orogen (Mozambique Belt). The two largest regional fluoride cool spots dominated the major and minor rift escarpments in the west and east of the study area respectively while the small ones emerged around the volcanic mountains in the north and south. Furthermore, significant spatial outliers emerged at the boundary of regional fluoride hotspots and cool spots as an indication of the spatial processes controlling the mobilization of fluoride in groundwater. While all water sources in the cool spots had fluoride concentrations below 1.5 mg/L, some had extremely low concentrations below 0.5 mg/L which is not safe for human consumption. For hotspots, 96% of water sources had fluoride concentrations above 1.5 mg/L. The probability of having safe source of drinking water varied from one geological unit to another with sources in the Neogene Quaternary volcanic formations having least probabilities.


Asunto(s)
Agua Potable , Agua Subterránea , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente , Fluoruros/análisis , Sistemas de Información Geográfica , Humanos , Tanzanía , Abastecimiento de Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...