Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Vaccine ; 42(23): 126062, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38969540

RESUMEN

In the context of polio eradication efforts, accurate assessment of vaccination programme effectiveness is essential to public health planning and decision making. Such assessments are often based on zero-dose children, estimated using the number of children who did not receive the first dose of the Diphtheria-Tetanus-Pertussis containing vaccine as a proxy. Our study introduces a novel approach to directly estimate the number of children susceptible to poliovirus type 2 (PV2) and uses this approach to provide district-level estimates for South Africa of susceptible children born between 2017 and 2022. We used district-level data on annual doses of inactivated poliovirus vaccine (IPV) administered, live births, and population sizes, from 2017 through 2022. We imputed missing vaccination data, implemented flexible assumptions regarding dose distribution in the eligible population, and used estimated efficacy values for one, two, three, and four doses of IPV, to compute the number of susceptible and immune children by birth year. We validated our approach by comparing an intermediary output with zero-dose children (ZDC) estimated using data reported by WHO/UNICEF Estimates of National Immunization Coverage (WUENIC). Our results indicate high heterogeneity in susceptibility to PV2 across South Africa's 52 districts as of the end of 2022. In children under 5 years, PV2 susceptibility ranged from approximately 30 % in districts including Xhariep (31.9 %), Ekurhuleni (30.1 %), and Central Karoo (29.8 %), to less than 4 % in Sarah Baartman (1.9 %), Buffalo City (2.1 %), and eThekwini (3.2 %). Our susceptibility estimates were consistently higher than ZDC over the timeframe. We estimated that ZDC decreased nationally from 155,168 (152,737-158,523) in 2017 to 108,593 in 2021, and increased to 127,102 in 2022, a trend consistent with ZDC derived from data reported by WUENIC. While our approach provides a more comprehensive profile of PV2 susceptibility, our susceptibility and ZDC estimates generally agree in the ranking of districts according to risk.


Asunto(s)
Erradicación de la Enfermedad , Programas de Inmunización , Poliomielitis , Vacuna Antipolio de Virus Inactivados , Poliovirus , Cobertura de Vacunación , Humanos , Sudáfrica/epidemiología , Poliomielitis/prevención & control , Poliomielitis/inmunología , Poliomielitis/epidemiología , Poliovirus/inmunología , Vacuna Antipolio de Virus Inactivados/administración & dosificación , Vacuna Antipolio de Virus Inactivados/inmunología , Cobertura de Vacunación/estadística & datos numéricos , Lactante , Erradicación de la Enfermedad/métodos , Preescolar , Vacunación/estadística & datos numéricos , Eficacia de las Vacunas/estadística & datos numéricos
2.
PLoS One ; 16(5): e0250086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33956823

RESUMEN

BACKGROUND: Applied epidemiological models are used in predicting future trends of diseases, for the basic understanding of disease and health dynamics, and to improve the measurement of health indicators. Mapping the research outputs of epidemiological modelling studies concerned with transmission dynamics of infectious diseases and public health interventions in Africa will help to identify the areas with substantial levels of research activities, areas with gaps, and research output trends. METHODS: A scoping review of applied epidemiological models of infectious disease studies that involved first or last authors affiliated to African institutions was conducted. Eligible studies were those concerned with the transmission dynamics of infectious diseases and public health interventions. The review was consistent with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) extension for scoping reviews. Four electronic databases were searched for peer-reviewed publications up to the end of April 2020. RESULTS: Of the 5927 publications identified, 181 met the inclusion criteria. The review identified 143 publications with first authors having an African institutional affiliation (AIA), while 81 had both first and last authors with an AIA. The publication authors were found to be predominantly affiliated with institutions based in South Africa and Kenya. Furthermore, human immunodeficiency virus, malaria, tuberculosis, and Ebola virus disease were found to be the most researched infectious diseases. There has been a gradual increase in research productivity across Africa especially in the last ten years, with several collaborative efforts spread both within and beyond Africa. CONCLUSIONS: Research productivity in applied epidemiological modelling studies of infectious diseases may have increased, but there remains an under-representation of African researchers as leading authors. The study findings indicate a need for the development of research capacity through supporting existing institutions in Africa and promoting research funding that will address local health priorities.


Asunto(s)
Enfermedades Transmisibles/transmisión , Modelos Estadísticos , Salud Pública , África , Enfermedades Transmisibles/epidemiología , Humanos
3.
Vaccines (Basel) ; 9(2)2021 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-33503898

RESUMEN

INTRODUCTION: Rubella vaccines have been used to prevent rubella and congenital rubella syndrome (CRS) in several World Health Organization (WHO) regions. Mathematical modelling studies have simulated introduction of rubella-containing vaccines (RCVs), and their results have been used to inform rubella introduction strategies in several countries. This systematic review aimed to synthesize the evidence from mathematical models regarding the impact of introducing RCVs. METHODS: We registered the review in the international prospective register of systematic reviews (PROSPERO) with registration number CRD42020192638. Systematic review methods for classical epidemiological studies and reporting guidelines were followed as far as possible. A comprehensive search strategy was used to identify published and unpublished studies with no language restrictions. We included deterministic and stochastic models that simulated RCV introduction into the public sector vaccination schedule, with a time horizon of at least five years. Models focused only on estimating epidemiological parameters were excluded. Outcomes of interest were time to rubella and CRS elimination, trends in incidence of rubella and CRS, number of vaccinated individuals per CRS case averted, and cost-effectiveness of vaccine introduction strategies. The methodological quality of included studies was assessed using a modified risk of bias tool, and a qualitative narrative was provided, given that data synthesis was not feasible. RESULTS: Seven studies were included from a total of 1393 records retrieved. The methodological quality was scored high for six studies and very high for one study. Quantitative data synthesis was not possible, because only one study reported point estimates and uncertainty intervals for the outcomes. All seven included studies presented trends in rubella incidence, six studies reported trends in CRS incidence, two studies reported the number vaccinated individuals per CRS case averted, and two studies reported an economic evaluation measure. Time to CRS elimination and time to rubella elimination were not reported by any of the included studies. Reported trends in CRS incidence showed elimination within five years of RCV introduction with scenarios involving mass vaccination of older children in addition to routine infant vaccination. CRS incidence was higher with RCV introduction than without RCV when public vaccine coverage was lower than 50% or only private sector vaccination was implemented. Although vaccination of children at a given age achieved slower declines in CRS incidence compared to mass campaigns targeting a wide age range, this approach resulted in the lowest number of vaccinated individuals per CRS case averted. CONCLUSION AND RECOMMENDATIONS: We were unable to conduct data synthesis of included studies due to discrepancies in outcome reporting. However, qualitative assessment of results of individual studies suggests that vaccination of infants should be combined with vaccination of older children to achieve rapid elimination of CRS. Better outcomes are obtained when rubella vaccination is introduced into public vaccination schedules at coverage figures of 80%, as recommended by WHO, or higher. Guidelines for reporting of outcomes in mathematical modelling studies and the conduct of systematic reviews of mathematical modelling studies are required.

4.
PLoS Comput Biol ; 16(5): e1007893, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32392252

RESUMEN

Individual-based models (IBMs) informing public health policy should be calibrated to data and provide estimates of uncertainty. Two main components of model-calibration methods are the parameter-search strategy and the goodness-of-fit (GOF) measure; many options exist for each of these. This review provides an overview of calibration methods used in IBMs modelling infectious disease spread. We identified articles on PubMed employing simulation-based methods to calibrate IBMs informing public health policy in HIV, tuberculosis, and malaria epidemiology published between 1 January 2013 and 31 December 2018. Articles were included if models stored individual-specific information, and calibration involved comparing model output to population-level targets. We extracted information on parameter-search strategies, GOF measures, and model validation. The PubMed search identified 653 candidate articles, of which 84 met the review criteria. Of the included articles, 40 (48%) combined a quantitative GOF measure with an algorithmic parameter-search strategy-either an optimisation algorithm (14/40) or a sampling algorithm (26/40). These 40 articles varied widely in their choices of parameter-search strategies and GOF measures. For the remaining 44 (52%) articles, the parameter-search strategy could either not be identified (32/44) or was described as an informal, non-reproducible method (12/44). Of these 44 articles, the majority (25/44) were unclear about the GOF measure used; of the rest, only five quantitatively evaluated GOF. Only a minority of the included articles, 14 (17%) provided a rationale for their choice of model-calibration method. Model validation was reported in 31 (37%) articles. Reporting on calibration methods is far from optimal in epidemiological modelling studies of HIV, malaria and TB transmission dynamics. The adoption of better documented, algorithmic calibration methods could improve both reproducibility and the quality of inference in model-based epidemiology. There is a need for research comparing the performance of calibration methods to inform decisions about the parameter-search strategies and GOF measures.


Asunto(s)
Enfermedades Transmisibles/epidemiología , Modelos Teóricos , Algoritmos , Calibración , Infecciones por VIH/epidemiología , Humanos , Malaria/epidemiología , Reproducibilidad de los Resultados , Tuberculosis/epidemiología
5.
PLoS Negl Trop Dis ; 11(7): e0005730, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28672001

RESUMEN

Females of all blood-feeding arthropod vectors must find and feed on a host in order to produce offspring. For tsetse-vectors of the trypanosomes that cause human and animal African trypanosomiasis-the problem is more extreme, since both sexes feed solely on blood. Host location is thus essential both for survival and reproduction. Host population density should therefore be an important driver of population dynamics for haematophagous insects, and particularly for tsetse, but the role of host density is poorly understood. We investigate the issue using data on changes in numbers of tsetse (Glossina morsitans morsitans Westwood) caught during a host elimination experiment in Zimbabwe in the 1960s. During the experiment, numbers of flies caught declined by 95%. We aimed to assess whether models including starvation-dependent mortality could explain observed changes in tsetse numbers as host density declined. An ordinary differential equation model, including starvation-dependent mortality, captured the initial dynamics of the observed tsetse population. However, whereas small numbers of tsetse were caught throughout the host elimination exercise, the modelled population went extinct. Results of a spatially explicit agent-based model suggest that this discrepancy could be explained by immigration of tsetse into the experimental plot. Variation in host density, as a result of natural and anthropogenic factors, may influence tsetse population dynamics in space and time. This has implications for Trypanosoma brucei rhodesiense transmission. Increased tsetse mortality as a consequence of low host density may decrease trypanosome transmission, but hungrier flies may be more inclined to bite humans, thereby increasing the risk of transmission to humans. Our model provides a way of exploring the role of host density on tsetse population dynamics and could be incorporated into models of trypanosome transmission dynamics to better understand how spatio-temporal variation in host density impacts trypanosome prevalence in mammalian hosts.


Asunto(s)
Conducta Alimentaria , Insectos Vectores/fisiología , Dinámica Poblacional , Moscas Tse-Tse/fisiología , Animales , Femenino , Insectos Vectores/crecimiento & desarrollo , Masculino , Modelos Teóricos , Tripanosomiasis Africana/transmisión , Moscas Tse-Tse/crecimiento & desarrollo , Zimbabwe
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA