Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nat Med ; 30(3): 797-809, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38429524

RESUMEN

Immune checkpoint blockade (ICB) targeting programmed cell death protein 1 (PD-1) and cytotoxic T lymphocyte protein 4 (CTLA-4) can induce remarkable, yet unpredictable, responses across a variety of cancers. Studies suggest that there is a relationship between a cancer patient's gut microbiota composition and clinical response to ICB; however, defining microbiome-based biomarkers that generalize across cohorts has been challenging. This may relate to previous efforts quantifying microbiota to species (or higher taxonomic rank) abundances, whereas microbial functions are often strain specific. Here, we performed deep shotgun metagenomic sequencing of baseline fecal samples from a unique, richly annotated phase 2 trial cohort of patients with diverse rare cancers treated with combination ICB (n = 106 discovery cohort). We demonstrate that strain-resolved microbial abundances improve machine learning predictions of ICB response and 12-month progression-free survival relative to models built using species-rank quantifications or comprehensive pretreatment clinical factors. Through a meta-analysis of gut metagenomes from a further six comparable studies (n = 364 validation cohort), we found cross-cancer (and cross-country) validity of strain-response signatures, but only when the training and test cohorts used concordant ICB regimens (anti-PD-1 monotherapy or combination anti-PD-1 plus anti-CTLA-4). This suggests that future development of gut microbiome diagnostics or therapeutics should be tailored according to ICB treatment regimen rather than according to cancer type.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Humanos , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Microbioma Gastrointestinal/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética
3.
Sci Adv ; 9(37): eadh0831, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37703359

RESUMEN

The incidence of hepatocellular carcinoma (HCC) is rapidly rising largely because of increased obesity leading to nonalcoholic steatohepatitis (NASH), a known HCC risk factor. There are no approved treatments to treat NASH. Here, we first used single-nucleus RNA sequencing to characterize a mouse model that mimics human NASH-driven HCC, the MUP-uPA mouse fed a high-fat diet. Activation of endoplasmic reticulum (ER) stress and inflammation was observed in a subset of hepatocytes that was enriched in mice that progress to HCC. We next treated MUP-uPA mice with the ER stress inhibitor BGP-15 and soluble gp130Fc, a drug that blocks inflammation by preventing interleukin-6 trans-signaling. Both drugs have progressed to phase 2/3 human clinical trials for other indications. We show that this combined therapy reversed NASH and reduced NASH-driven HCC. Our data suggest that these drugs could provide a potential therapy for NASH progression to HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Carcinoma Hepatocelular/etiología , Carcinoma Hepatocelular/prevención & control , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Neoplasias Hepáticas/etiología , Neoplasias Hepáticas/prevención & control , Hepatocitos , Inflamación/tratamiento farmacológico
4.
J Environ Manage ; 339: 117948, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37080094

RESUMEN

The safeguarding of Australian outdoor stone heritage is currently limited by a lack of information concerning mechanisms responsible for the degradation of the built heritage. In this study, the bacterial community colonizing the stone surface of an outdoor sculpture located at the Church of St. John the Evangelist in Melbourne was analysed, providing an overview of the patterns of microbial composition associated with stone in an anthropogenic context. Illumina MiSeq 16S rRNA gene sequencing together with confocal laser microscope investigations highlighted the bacterial community was composed of both phototrophic and chemotrophic microorganisms characteristic of stone and soil, and typical of arid, salty and urban environments. Cardinal exposure, position and surface geometry were the most important factors in determining the structure of the microbial community. The North-West exposed areas on the top of the sculpture with high light exposure gave back the highest number of sequences and were dominated by Cyanobacteria. The South and West facing in middle and lower parts of the sculpture received significantly lower levels of radiation and were dominated by Actinobacteria. Proteobacteria were observed as widespread on the sculpture. This pioneer research provided an in-depth investigation of the microbial community structure on a deteriorated artistic stone in the Australian continent and provides information for the identification of deterioration-associated microorganisms and/or bacteria beneficial for stone preservation.


Asunto(s)
Biopelículas , Cianobacterias , Australia , Cianobacterias/genética , ARN Ribosómico 16S/genética , Escultura
5.
Nat Commun ; 14(1): 1530, 2023 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-36934086

RESUMEN

Even in the setting of optimal resuscitation in high-income countries severe sepsis and septic shock have a mortality of 20-40%, with antibiotic resistance dramatically increasing this mortality risk. To develop a reference dataset enabling the identification of common bacterial targets for therapeutic intervention, we applied a standardized genomic, transcriptomic, proteomic and metabolomic technological framework to multiple clinical isolates of four sepsis-causing pathogens: Escherichia coli, Klebsiella pneumoniae species complex, Staphylococcus aureus and Streptococcus pyogenes. Exposure to human serum generated a sepsis molecular signature containing global increases in fatty acid and lipid biosynthesis and metabolism, consistent with cell envelope remodelling and nutrient adaptation for osmoprotection. In addition, acquisition of cholesterol was identified across the bacterial species. This detailed reference dataset has been established as an open resource to support discovery and translational research.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Humanos , Antibacterianos/uso terapéutico , Proteómica , Sepsis/microbiología , Bacterias , Escherichia coli , Klebsiella , Pruebas de Sensibilidad Microbiana
7.
Infect Immun ; 90(9): e0024222, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35924898

RESUMEN

To combat infections, hosts employ a combination of antagonistic and cooperative defense strategies. The former refers to pathogen killing mediated by resistance mechanisms, while the latter refers to physiological defense mechanisms that promote host health during infection independent of pathogen killing, leading to an apparent cooperation between the host and the pathogen. Previous work has shown that Leptin, a pleiotropic hormone that plays a central role in regulating appetite and energy metabolism, is indispensable for resistance mechanisms, while a role for Leptin signaling in cooperative host-pathogen interactions remains unknown. Using a mouse model of Yersinia pseudotuberculosis (Yptb) infection, an emerging pathogen that causes fever, diarrhea, and mesenteric lymphadenitis in humans, we found that the physiological effects of chronic Leptin-signaling deficiency conferred protection from Yptb infection due to increased host-pathogen cooperation rather than greater resistance defenses. The protection against Yptb infection was independent of differences in food consumption, lipolysis, or fat mass. Instead, we found that the chronic absence of Leptin signaling protects from a shift to lipid utilization during infection that contributes to Yptb lethality. Furthermore, we found that the survival advantage conferred by Leptin deficiency was associated with increased liver and kidney damage. Our work reveals an additional level of complexity for the role of Leptin in infection defense and demonstrates that in some contexts, in addition to tolerating the pathogen, tolerating organ damage is more beneficial for survival than preventing the damage.


Asunto(s)
Infecciones por Yersinia pseudotuberculosis , Yersinia pseudotuberculosis , Interacciones Huésped-Patógeno , Humanos , Leptina/metabolismo , Lípidos , Yersinia pseudotuberculosis/metabolismo
8.
Cell Metab ; 34(5): 761-774.e9, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35413274

RESUMEN

K. pneumoniae sequence type 258 (Kp ST258) is a major cause of healthcare-associated pneumonia. However, it remains unclear how it causes protracted courses of infection in spite of its expression of immunostimulatory lipopolysaccharide, which should activate a brisk inflammatory response and bacterial clearance. We predicted that the metabolic stress induced by the bacteria in the host cells shapes an immune response that tolerates infection. We combined in situ metabolic imaging and transcriptional analyses to demonstrate that Kp ST258 activates host glutaminolysis and fatty acid oxidation. This response creates an oxidant-rich microenvironment conducive to the accumulation of anti-inflammatory myeloid cells. In this setting, metabolically active Kp ST258 elicits a disease-tolerant immune response. The bacteria, in turn, adapt to airway oxidants by upregulating the type VI secretion system, which is highly conserved across ST258 strains worldwide. Thus, much of the global success of Kp ST258 in hospital settings can be explained by the metabolic activity provoked in the host that promotes disease tolerance.


Asunto(s)
Infecciones por Klebsiella , Klebsiella pneumoniae , Humanos , Infecciones por Klebsiella/microbiología , Estrés Fisiológico
9.
iScience ; 25(3): 103941, 2022 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-35265813

RESUMEN

Maintenance of energy balance is essential for overall organismal health. Mammals have evolved complex regulatory mechanisms that control energy intake and expenditure. Traditionally, studies have focused on understanding the role of macronutrient physiology in energy balance. In the present study, we examined the role of the essential micronutrient iron in regulating energy balance. We found that a short course of dietary iron caused a negative energy balance resulting in a severe whole body wasting phenotype. This disruption in energy balance was because of impaired intestinal nutrient absorption. In response to dietary iron-induced negative energy balance, adipose triglyceride lipase (ATGL) was necessary for wasting of subcutaneous white adipose tissue and lipid mobilization. Fat-specific ATGL deficiency protected mice from fat wasting, but caused a severe cachectic response in mice when fed iron. Our work reveals a mechanism for micronutrient control of lipolysis that is necessary for regulating mammalian energy balance.

10.
Trends Microbiol ; 30(9): 853-865, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35184972

RESUMEN

The human gut is host to a diverse range of microorganisms that offer protection against colonization by multidrug-resistant bacteria. Antibiotic use, medications, health conditions, and lifestyle factors can alter the composition of the gut microbiota in such a way that results in loss of colonization resistance and increased susceptibility to invading pathogenic antibiotic-resistant bacteria. Therapeutics aiming to restore a diverse and protective microbiome are fast advancing. In this review, we focus on the compositional changes within the gut microbiome that are associated with colonization resistance and discuss their use as potential targets for therapeutics or diagnostics.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética , Farmacorresistencia Bacteriana Múltiple , Humanos
11.
Microbiol Spectr ; 10(1): e0175721, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35019769

RESUMEN

Mouthwash is a commonly used product and has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effects of mouthwash on the oral microbiota are largely unknown. We investigated the impact of 12 weeks of daily mouthwash use on the oropharyngeal microbiota in a subset of men who have sex with men who participated in a randomized trial comparing the efficacy of two alcohol-free mouthwashes for the prevention of gonorrhea. We characterized the oropharyngeal microbiota using 16S rRNA gene sequencing of tonsillar fossae samples collected before and after 12 weeks of daily use of Listerine mouthwash or Biotène dry mouth oral rinse. Permutational multivariate analysis of variance (PERMANOVA) was used to assess differences in oropharyngeal microbiota composition following mouthwash use. Differential abundance testing was performed using ALDEx2, with false-discovery rate correction. A total of 306 samples from 153 men were analyzed (Listerine, n = 78 and Biotène, n = 75). There was no difference in the overall structure of the oropharyngeal microbiota following Listerine or Biotène use (PERMANOVA P = 0.413 and P = 0.331, respectively). Although no bacterial taxa were significantly differentially abundant following Listerine use, we observed a small but significant decrease in the abundance of both Streptococcus and Leptotrichia following Biotène use. Overall, our findings suggest that daily use of antiseptic mouthwash has minimal long-term effects on the composition of the oropharyngeal microbiota. IMPORTANCE Given the role of the oral microbiota in human health, it is important to understand if and how external factors influence its composition. Mouthwash use is common in some populations, and the use of antiseptic mouthwash has been proposed as an alternative intervention to prevent gonorrhea transmission. However, the long-term effect of mouthwash use on the oral microbiota composition is largely unknown. We found that daily use of two different commercially available mouthwashes had limited long-term effects on the composition of the oropharyngeal microbiota over a 12-week period. The results from our study and prior studies highlight that different mouthwashes may differentially affect the oral microbiome composition and that further studies are needed to determine if mouthwash use induces short-term changes to the oral microbiota that may have detrimental effects.


Asunto(s)
Homosexualidad Masculina , Microbiota/efectos de los fármacos , Antisépticos Bucales/farmacología , Minorías Sexuales y de Género , Adulto , Método Doble Ciego , Combinación de Medicamentos , Glucosa Oxidasa/farmacología , Gonorrea , Humanos , Lactoperoxidasa/farmacología , Masculino , Microbiota/genética , Muramidasa/farmacología , Orofaringe/microbiología , ARN Ribosómico 16S , Salicilatos , Terpenos , Adulto Joven
12.
Microbiome ; 9(1): 92, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853672

RESUMEN

BACKGROUND: Infectious bacterial diseases exhibiting increasing resistance to antibiotics are a serious global health issue. Bacteriophage therapy is an anti-microbial alternative to treat patients with serious bacterial infections. However, the impacts to the host microbiome in response to clinical use of phage therapy are not well understood. RESULTS: Our paper demonstrates a largely unchanged microbiota profile during 4 weeks of phage therapy when added to systemic antibiotics in a single patient with Staphylococcus aureus device infection. Metabolomic analyses suggest potential indirect cascading ecological impacts to the host (skin) microbiome. We did not detect genomes of the three phages used to treat the patient in metagenomic samples taken from saliva, stool, and skin; however, phages were detected using endpoint-PCR in patient serum. CONCLUSION: Results from our proof-of-principal study supports the use of bacteriophages as a microbiome-sparing approach to treat bacterial infections. Video abstract.


Asunto(s)
Bacteriófagos , Microbiota , Terapia de Fagos , Infecciones Estafilocócicas , Antibacterianos/uso terapéutico , Bacteriófagos/genética , Humanos , Infecciones Estafilocócicas/tratamiento farmacológico
13.
Sci Adv ; 7(5)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33514556

RESUMEN

Maternal behavior is necessary for optimal development and growth of offspring. The intestinal microbiota has emerged as a critical regulator of growth and development in the early postnatal period life. Here, we describe the identification of an intestinal Escherichia coli strain that is pathogenic to the maternal-offspring system during the early postnatal stage of life and results in growth stunting of the offspring. However, rather than having a direct pathogenic effect on the infant, we found that this particular E. coli strain was pathogenic to the dams by interfering with the maturation of maternal behavior. This resulted in malnourishment of the pups and impaired insulin-like growth factor 1 (IGF-1) signaling, leading to the consequential stunted growth. Our work provides a new understanding of how the microbiota regulates postnatal growth and an additional variable that must be considered when studying the regulation of maternal behavior.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Animales Recién Nacidos , Escherichia coli , Femenino , Humanos , Conducta Materna
14.
mSystems ; 5(4)2020 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-32817384

RESUMEN

Vancomycin-resistant Enterococcus faecium (VREfm) is an emerging antibiotic-resistant pathogen. Strain-level investigations are beginning to reveal the molecular mechanisms used by VREfm to colonize regions of the human bowel. However, the role of commensal bacteria during VREfm colonization, in particular following antibiotic treatment, remains largely unknown. We employed amplicon 16S rRNA gene sequencing and metabolomics in a murine model system to try and investigate functional roles of the gut microbiome during VREfm colonization. First-order taxonomic shifts between Bacteroidetes and Tenericutes within the gut microbial community composition were detected both in response to pretreatment using ceftriaxone and to subsequent VREfm challenge. Using neural networking approaches to find cooccurrence profiles of bacteria and metabolites, we detected key metabolome features associated with butyric acid during and after VREfm colonization. These metabolite features were associated with Bacteroides, indicative of a transition toward a preantibiotic naive microbiome. This study shows the impacts of antibiotics on the gut ecosystem and the progression of the microbiome in response to colonization with VREfm. Our results offer insights toward identifying potential nonantibiotic alternatives to eliminate VREfm through metabolic reengineering to preferentially select for Bacteroides IMPORTANCE This study demonstrates the importance and power of linking bacterial composition profiling with metabolomics to find the interactions between commensal gut bacteria and a specific pathogen. Knowledge from this research will inform gut microbiome engineering strategies, with the aim of translating observations from animal models to human-relevant therapeutic applications.

15.
Environ Microbiol Rep ; 12(5): 525-533, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32633030

RESUMEN

Microbial communities play important roles in the biogeochemical cycling of carbon in the Earth's deep subsurface. Previously, we demonstrated changes to the microbial community structure of a deep aquifer (1.4 km) receiving 150 tons of injected supercritical CO2 (scCO2 ) in a geosequestration experiment. The observed changes support a key role in the aquifer microbiome for the thermophilic CO-utilizing anaerobe Carboxydocella, which decreased in relative abundance post-scCO2 injection. Here, we present results from more detailed metagenomic profiling of this experiment, with genome resolution of the native carboxydotrophic Carboxydocella. We demonstrate a switch in CO-oxidation potential by Carboxydocella through analysis of its carbon monoxide dehydrogenase (CODH) gene before and after the geosequestration experiment. We discuss the potential impacts of scCO2 on subsurface flow of carbon and electrons from oxidation of the metabolic intermediate carbon monoxide (CO).


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Agua Subterránea/microbiología , Bacterias/clasificación , Bacterias/aislamiento & purificación , Dióxido de Carbono/metabolismo , Monóxido de Carbono/metabolismo , Genoma Bacteriano , Metagenómica , Oxidación-Reducción
16.
PLoS One ; 15(3): e0223629, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32196505

RESUMEN

Bats are well known reservoir hosts for RNA and DNA viruses. The use of captive bats in research has intensified over the past decade as researchers aim to examine the virus-reservoir host interface. In this study, we investigated the effects of captivity on the fecal bacterial microbiome of an insectivorous microbat, Mops condylurus, a species that roosts in close proximity to humans and has likely transmitted viral infections to humans. Using amplicon 16S rRNA gene sequencing, we characterized changes in fecal bacterial community composition for individual bats directly at the time of capture and again after six weeks in captivity. We found that microbial community richness by measure of the number of observed operational taxonomic units (OTUs) in bat feces increases in captivity. Importantly, we found the similarity of microbial community structures of fecal microbiomes between different bats to converge during captivity. We propose a six week-acclimatization period prior to carrying out infection studies or other research influenced by the microbiome composition, which may be advantageous to reduce variation in microbiome composition and minimize biological variation inherent to in vivo experimental studies.


Asunto(s)
Quirópteros/microbiología , Eulipotyphla/microbiología , Microbioma Gastrointestinal/genética , Animales , ADN Bacteriano/genética , Heces/microbiología , Firmicutes/genética , Insectos/microbiología , Filogenia , Proteobacteria/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ARN
17.
J Affect Disord ; 266: 429-446, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32056910

RESUMEN

Background Anxiety/depression and irritable bowel syndrome (IBS) are highly prevalent and burdensome conditions, whose co-occurrence is estimated between 44 and 84%. Shared gut microbiota alterations have been identified in these separate disorders relative to controls; however, studies have not adequately considered their comorbidity. This review set out to identify case-control studies comparing the gut microbiota in anxiety/depression, IBS, and both conditions comorbidly relative to each other and to controls, as well as gut microbiota investigations including measures of both IBS and anxiety/depression. Methods Four databases were systematically searched using comprehensive search terms (OVID Medline, Embase, PsycINFO, and PubMed), following PRISMA guidelines. Results Systematic review identified 17 studies (10 human, 7 animal). Most studies investigated the gut microbiota and anxiety/depression symptoms in IBS cohorts. Participants with IBS and high anxiety/depression symptoms had lower alpha diversity compared to controls and IBS-only cohorts. Machine learning and beta diversity distinguished between IBS participants with and without anxiety/depression by their gut microbiota. Comorbid IBS and anxiety/depression also had higher abundance of Proteobacteria, Prevotella/Prevotellaceae, Bacteroides and lower Lachnospiraceae relative to controls. Limitations A large number of gut microbiota estimation methods and statistical techniques were utilized; therefore, meta-analysis was not possible. Conclusions Well-designed case-control and longitudinal studies are required to disentangle whether the gut microbiota is predicted as a continuum of gastrointestinal and anxiety/depression symptom severity, or whether reported dysbiosis is unique to IBS and anxiety/depression comorbidity. These findings may inform the development of targeted treatment through the gut microbiota for individuals with both anxiety/depression and IBS.


Asunto(s)
Microbioma Gastrointestinal , Síndrome del Colon Irritable , Animales , Ansiedad/epidemiología , Depresión/epidemiología , Disbiosis , Humanos , Síndrome del Colon Irritable/epidemiología
18.
Nat Microbiol ; 5(1): 141-153, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31686028

RESUMEN

Staphylococcus aureus small colony variants (SCVs) are frequently associated with chronic infection, yet they lack expression of many virulence determinants associated with the pathogenicity of wild-type strains. We found that both wild-type S. aureus and a ΔhemB SCV prototype potently activate glycolysis in host cells. Glycolysis and the generation of mitochondrial reactive oxygen species were sufficient to induce necroptosis, a caspase-independent mechanism of host cell death that failed to eradicate S. aureus and instead promoted ΔhemB SCV pathogenicity. To support ongoing glycolytic activity, the ΔhemB SCV induced over a 100-fold increase in the expression of fumC, which encodes an enzyme that catalyses the degradatin of fumarate, an inhibitor of glycolysis. Consistent with fumC-dependent depletion of local fumarate, the ΔhemB SCV failed to elicit trained immunity and protection from a secondary infectious challenge in the skin. The reliance of the S. aureus SCV population on glycolysis accounts for much of its role in the pathogenesis of S. aureus skin infection.


Asunto(s)
Inmunomodulación , Infecciones Cutáneas Estafilocócicas/metabolismo , Infecciones Cutáneas Estafilocócicas/patología , Staphylococcus aureus/patogenicidad , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Cultivadas , Fumaratos/metabolismo , Regulación Bacteriana de la Expresión Génica , Glucólisis , Humanos , Evasión Inmune , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Necroptosis/genética , Especies Reactivas de Oxígeno/metabolismo , Infecciones Cutáneas Estafilocócicas/inmunología , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo , Células THP-1
19.
Mol Med ; 25(1): 12, 2019 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-30943912

RESUMEN

BACKGROUND: The polymeric immunoglobulin receptor (pIgR) maintains the integrity of epithelial barriers by transporting polymeric antibodies and antigens through the epithelial mucosa into the lumen. In this study, we examined the role of pIgR in maintaining gut barrier integrity, which is important for the normal development in mice. METHODS: Cohorts of pIgR-/- mice and their wildtype controls were housed under Specific Pathogen Free (SPF) conditions and monitored for weight gain as an indicator of development over time. The general physiology of the gastrointestinal tract was analysed using immunohistochemistry in young (8-12 weeks of age) and aged mice (up to 18 months of age), and the observed immunopathology in pIgR-/- mice was further characterised using flow cytometry. Urinary metabolites were analysed using gas chromatography-mass spectrometry (GC-MS), which revealed changes in metabolites that correlated with age-related increase in gut permeability in pIgR-/- mice. RESULTS: We observed that pIgR-/- mice exhibited delayed growth, and this phenomenon is associated with low-grade gut inflammation that increased with ageing. The gross intraepithelial lymphocytic (IEL) infiltration characteristic of pIgR-/- mice was redefined as CD8α+αß+ T cells, the majority of which expressed high levels of CD103 and CD69 consistent with tissue resident memory T cells (TRM). Comparison of the urinary metabolome between pIgR-/- and wild-type mice revealed key changes in urinary biomarkers fucose, glycine and Vitamin B5, suggestive of altered mucosal permeability. A significant increase in gut permeability was confirmed by analysing the site-specific uptake of sugar probes in different parts of the intestine. CONCLUSION: Our data show that loss of the secretory antibody system in mice results in enhanced accumulation of inflammatory IELs in the gut, which likely reflects ongoing inflammation in reaction to gut microbiota or food antigens, leading to delayed growth in pIgR-/- mice. We demonstrate that this leads to the presence of a unique urinary metabolome profile, which may provide a biomarker for altered gut permeability.


Asunto(s)
Tracto Gastrointestinal/inmunología , Linfocitos Intraepiteliales/inmunología , Metaboloma , Receptores de Inmunoglobulina Polimérica/genética , Orina/química , Animales , Anticuerpos/genética , Citocinas/sangre , Femenino , Tracto Gastrointestinal/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados
20.
Exp Biol Med (Maywood) ; 244(6): 494-504, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30776908

RESUMEN

IMPACT STATEMENT: Considering the clear effects of microbiota on important aspects of animal biology and development (including in humans), this topic is timely and broadly appealing, as it compels us to consider the possibilities of altering the microbiome (without antibiotics) to positively affect animal health. In this review, we highlight three general approaches to manipulating the microbiome that have demonstrated success and promise for use in animal health. We also point out knowledge gaps where further inquiry would most benefit the field. Our paper not only provides a short and digestible overview of the current state of application, but also calls for further exploration of the microbial diversity at hand to expand our toolkit, while also leveraging the diversity and flexibility of animal systems to better understand mechanisms of efficacy.


Asunto(s)
Microbioma Gastrointestinal/fisiología , Medicina Veterinaria/métodos , Medicina Veterinaria/tendencias , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...