Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
ACS Nano ; 18(32): 20861-20885, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39082637

RESUMEN

Liver fibrosis (LF) is a pathological repair reaction caused by a chronic liver injury that affects the health of millions of people worldwide, progressing to life-threatening cirrhosis and liver cancer without timely intervention. Due to the complexity of LF pathology, multiple etiological characteristics, and the deposited extracellular matrix, traditional drugs cannot reach appropriate targets in a time-space matching way, thus decreasing the therapeutic effect. Nanoparticle drug delivery systems (NDDS) enable multidrug co-therapy and develop multifactor delivery strategies targeting pathological processes, showing great potential in LF therapy. Based on the pathogenesis and the current clinical treatment status of LF, we systematically elucidate the targeting mechanism of NDDS used in the treatment of LF. Subsequently, we focus on the progress of drug delivery applications for LF, including combined delivery for the liver fibrotic pathological environment, overcoming biological barriers, precise intracellular regulation, and intelligent responsive delivery for the liver fibrotic microenvironment. We hope that this review will inspire the rational design of NDDS for LF in the future in order to provide ideas and methods for promoting LF regression and cure.


Asunto(s)
Cirrosis Hepática , Humanos , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Animales , Sistema de Administración de Fármacos con Nanopartículas/química , Sistemas de Liberación de Medicamentos , Nanopartículas/química
2.
Front Mol Biosci ; 11: 1420365, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38911125

RESUMEN

Protein methylation, similar to DNA methylation, primarily involves post-translational modification (PTM) targeting residues of nitrogen-containing side-chains and other residues. Protein arginine methylation, occurred on arginine residue, is mainly mediated by protein arginine methyltransferases (PRMTs), which are ubiquitously present in a multitude of organisms and are intricately involved in the regulation of numerous biological processes. Specifically, PRMTs are pivotal in the process of gene transcription regulation, and protein function modulation. Abnormal arginine methylation, particularly in histones, can induce dysregulation of gene expression, thereby leading to the development of cancer. The recent advancements in modification mediated by PRMTs and cancer research have had a profound impact on our understanding of the abnormal modification involved in carcinogenesis and progression. This review will provide a defined overview of these recent progression, with the aim of augmenting our knowledge on the role of PRMTs in progression and their potential application in cancer therapy.

3.
J Nanobiotechnology ; 22(1): 137, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553725

RESUMEN

Immune checkpoint inhibitors (ICIs) combined with antiangiogenic therapy have shown encouraging clinical benefits for the treatment of unresectable or metastatic hepatocellular carcinoma (HCC). Nevertheless, therapeutic efficacy and wide clinical applicability remain a challenge due to "cold" tumors' immunological characteristics. Tumor immunosuppressive microenvironment (TIME) continuously natural force for immune escape by extracellular matrix (ECM) infiltration, tumor angiogenesis, and tumor cell proliferation. Herein, we proposed a novel concept by multi-overcoming immune escape to maximize the ICIs combined with antiangiogenic therapy efficacy against HCC. A self-delivery photothermal-boosted-NanoBike (BPSP) composed of black phosphorus (BP) tandem-augmented anti-PD-L1 mAb plus sorafenib (SF) is meticulously constructed as a triple combination therapy strategy. The simplicity of BPSP's composition, with no additional ingredients added, makes it easy to prepare and presents promising marketing opportunities. (1) NIR-II-activated BPSP performs photothermal therapy (PTT) and remodels ECM by depleting collagen I, promoting deep penetration of therapeutics and immune cells. (2) PTT promotes SF release and SF exerts anti-vascular effects and down-regulates PD-L1 via RAS/RAF/ERK pathway inhibition, enhancing the efficacy of anti-PD-L1 mAb in overcoming immune evasion. (3) Anti-PD-L1 mAb block PD1/PD-L1 recognition and PTT-induced ICD initiates effector T cells and increases response rates of PD-L1 mAb. Highly-encapsulated BPSP converted 'cold' tumors into 'hot' ones, improved CTL/Treg ratio, and cured orthotopic HCC tumors in mice. Thus, multi-overcoming immune escape offers new possibilities for advancing immunotherapies, and photothermal/chemical/immune synergistic therapy shows promise in the clinical development of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Ratones , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Antígeno B7-H1/metabolismo , Terapia Fototérmica , Sorafenib/farmacología , Línea Celular Tumoral , Microambiente Tumoral
4.
Adv Sci (Weinh) ; 11(9): e2305275, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38110834

RESUMEN

Tumor immune escape caused by low levels of tumor immunogenicity and immune checkpoint-dependent suppression limits the immunotherapeutic effect. Herein, a "two-way regulation" epigenetic therapeutic strategy is proposed using a novel nano-regulator that inhibits tumor immune escape by upregulating expression of tumor-associated antigens (TAAs) to improve immunogenicity and downregulating programmed cell death 1 ligand 1 (PD-L1) expression to block programmed death-1 (PD-1)/PD-L1. To engineer the nano-regulator, the DNA methyltransferase (DNMT) inhibitor zebularine (Zeb) and the bromodomain-containing protein 4 (BRD4) inhibitor JQ1 are co-loaded into the cationic liposomes with condensing the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine (CpG) via electrostatic interactions to obtain G-J/ZL. Then, asparagine-glycine-arginine (NGR) modified material carboxymethyl-chitosan (CMCS) is coated on the surface of G-J/ZL to construct CG-J/ZL. CG-J/ZL is shown to target tumor tissue and disassemble under the acidic tumor microenvironment (TME). Zeb upregulated TAAs expression to improve the immunogenicity; JQ1 inhibited PD-L1 expression to block immune checkpoint; CpG promote dendritic cell (DC) maturation and reactivated the ability of tumour-associated macrophages (TAM) to kill tumor cells. Taken together, these results demonstrate that the nano-regulator CG-J/ZL can upregulate TAAs expression to enhance T-cell infiltration and downregulate PD-L1 expression to improve the recognition of tumor cells by T-cells, representing a promising strategy to improve antitumor immune response.


Asunto(s)
Antígeno B7-H1 , Escape del Tumor , Antígeno B7-H1/metabolismo , Proteínas Nucleares/genética , Factores de Transcripción/genética , Antígenos de Neoplasias , Epigénesis Genética
5.
Pharmaceutics ; 15(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38140108

RESUMEN

Nano-delivery systems have demonstrated great promise in the therapy of cancer. However, the therapeutic efficacy of conventional nanomedicines is hindered by the clearance of the blood circulation system and the physiological barriers surrounding the tumor. Inspired by the unique capabilities of cells within the body, such as immune evasion, prolonged circulation, and tumor-targeting, there has been a growing interest in developing cell membrane biomimetic nanomedicine delivery systems. Cell membrane modification on nanoparticle surfaces can prolong circulation time, activate tumor-targeting, and ultimately improve the efficacy of cancer treatment. It shows excellent development potential. This review will focus on the advancements in various cell membrane nano-drug delivery systems for cancer therapy and the obstacles encountered during clinical implementation. It is hoped that such discussions will inspire the development of cell membrane biomimetic nanomedical systems.

6.
ACS Nano ; 17(14): 13611-13626, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37326384

RESUMEN

The cancer-associated fibroblast (CAF) barrier in pancreatic ductal adenocarcinoma (PDAC) greatly restricts clinical outcomes. Major obstacles to PDAC treatment include restricted immune cell infiltration and drug penetration and the immunosuppressive microenvironment. Here, we reported a "shooting fish in a barrel" strategy by preparing a lipid-polymer hybrid drug delivery system (PI/JGC/L-A) that could overcome the CAF barrier by turning it into a "barrel" with antitumor drug depot properties to alleviate the immunosuppressive microenvironment and increase immune cell infiltration. PI/JGC/L-A is composed of a pIL-12-loaded polymeric core (PI) and a JQ1 and gemcitabine elaidate coloaded liposomal shell (JGC/L-A) that has the ability to stimulate exosome secretion. By normalizing the CAF barrier to create a CAF "barrel" with JQ1, stimulating the secretion of gemcitabine-loaded exosomes from the CAF "barrel" to the deep tumor site, and leveraging the CAF "barrel" to secrete IL-12, PI/JGC/L-A realized effective drug delivery to the deep tumor site, activated antitumor immunity at the tumor site, and produced significant antitumor effects. In summary, our strategy of transforming the CAF barrier into antitumor drug depots represents a promising strategy against PDAC and might benefit the treatment of any tumors facing a drug delivery barrier.


Asunto(s)
Antineoplásicos , Fibroblastos Asociados al Cáncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animales , Preparaciones Farmacéuticas , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Inmunoterapia , Microambiente Tumoral , Línea Celular Tumoral , Neoplasias Pancreáticas
7.
Nat Commun ; 14(1): 2248, 2023 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-37076492

RESUMEN

Targeting tumour immunosuppressive microenvironment is a crucial strategy in immunotherapy. However, the critical role of the tumour lymph node (LN) immune microenvironment (TLIME) in the tumour immune homoeostasis is often ignored. Here, we present a nanoinducer, NIL-IM-Lip, that remodels the suppressed TLIME via simultaneously mobilizing T and NK cells. The temperature-sensitive NIL-IM-Lip is firstly delivered to tumours, then directed to the LNs following pH-sensitive shedding of NGR motif and MMP2-responsive release of IL-15. IR780 and 1-MT induces immunogenic cell death and suppress regulatory T cells simultaneously during photo-thermal stimulation. We demonstrate that combining NIL-IM-Lip with anti-PD-1 significantly enhances the effectiveness of T and NK cells, leading to greatly suppressed tumour growth in both hot and cold tumour models, with complete response in some instances. Our work thus highlights the critical role of TLIME in immunotherapy and provides proof of principle to combine LN targeting with immune checkpoint blockade in cancer immunotherapy.


Asunto(s)
Liposomas , Neoplasias , Humanos , Nanomedicina , Temperatura , Neoplasias/terapia , Neoplasias/patología , Ganglios Linfáticos/patología , Microambiente Tumoral , Inmunoterapia
8.
Pharmaceutics ; 15(2)2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36839748

RESUMEN

Liver cancer, especially hepatocellular carcinoma, is an important cause of cancer-related death, and its incidence is increasing worldwide. Nano drug delivery systems have shown great promise in the treatment of cancers. In order to improve their therapeutic efficacy, it is very important to realize the high accumulation and effective release of drugs at the tumor site. In this manuscript, using doxorubicin (DOX) as a model drug, CD13-targeted mesoporous silica nanoparticles coated with NGR-peptide-modified pegylated carboxymethyl chitosan were constructed (DOX/MSN-CPN). DOX/MSN-CPN comprises a spherical shape with an obvious capping structure and a particle size of 125.01 ± 1.52 nm. With a decrease in pH, DOX/MSN-CPN showed responsive desorption from DOX/MSN-CPN and pH-responsive release of DOX was observed. Meanwhile, DOX/MSN-CPN could be efficiently absorbed through NGR-mediated internalization in vitro and could efficiently deliver DOX to tumor tissues with long accumulation times in vivo, suggesting good active targeting properties. Moreover, significant tumor inhibition has been observed in antitumor studies in vivo. This study provides a strategy of utilizing DOX/MSN-CPN as a nano-platform for drug delivery, which has superb therapeutic efficacy and safety for the treatment of hepatocellular carcinoma both in vivo and in vitro.

9.
Adv Sci (Weinh) ; 9(27): e2201834, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35918610

RESUMEN

Photothermal therapy (PTT) is a promising strategy for cancer treatment, but its clinical application relies heavily on accurate tumor positioning and effective combination. Nanotheranostics has shown superior application in precise tumor positioning and treatment, bringing potential opportunities for developing novel PTT-based therapies. Here, a nanotheranostic agent is proposed to enhance magnetic resonance imaging (MRI)/ near-infrared fluorescence imaging (NIRFI) imaging-guided photo-induced triple-therapy for cancer. Thermosensitive liposomes co-loaded with SPIONs/IR780 and Abemaciclib (SIA-TSLs), peptide ACKFRGD, and click group 2-cyano-6-amino-benzothiazole (CABT) are co-modified on the surface of SIA-TSLs to form SIA-αTSLs. ACKFRGD can be hydrolyzed to expose the 1, 2-thiolamino groups in the presence of cathepsin B in tumors, which click cycloaddition with the cyano group on CABT, resulting in the formation of SIA-αTSLs aggregates. The aggregation of SIA-αTSLs in tumors enhances the MRI/NIRFI imaging capability and enables precise PTT. Photo-induced triple-therapy enhances precision cancer therapy. First, PTT ablates specific tumors and induces ICD via localized photothermal. Second, local tumor heating promotes the rupture of SIA-αTSLs, which release Abemaciclib to block the tumor cell cycle and inhibit Tregs proliferation. Third, injecting GM-CSF into tumor tissue leads to recruitment of dendritic cells and initiation of antitumor immunity. Collectively, these results present a promising nanotheranostic strategy for future cancer therapy.


Asunto(s)
Factor Estimulante de Colonias de Granulocitos y Macrófagos , Neoplasias , Aminopiridinas , Bencimidazoles , Catepsina B , Humanos , Liposomas , Neoplasias/diagnóstico por imagen , Neoplasias/terapia , Nanomedicina Teranóstica/métodos
10.
ACS Appl Mater Interfaces ; 14(18): 20628-20640, 2022 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-35477252

RESUMEN

In recent years, therapeutic strategies based on macrophages have been inspiringly developed, but due to the high intricacy and immunosuppression of the tumor microenvironment, the widespread use of these strategies still faces significant challenges. Herein, an artificial assembled macrophage concept (AB@LM) was presented to imitate the main antitumor abilities of macrophages of tumor targeting, promoting the antitumor immunity, and direct tumor-killing effects. The artificial assembled macrophage (AB@LM) was prepared through an extrusion method, which is to fuse the macrophage membrane with abemaciclib and black phosphorus quantum dot (BPQD)-loaded liposomes. AB@LM showed good stability and tumor targeting ability with the help of macrophage membrane. Furthermore, AB@LM reversed the immunosuppressive tumor microenvironment by inhibiting regulatory T cells (Tregs) and stimulating the maturation of antigen-presenting cells to activate the antitumor immune response through triggering an immunogenic cell death effect. More importantly, in the colorectal tumor model in vivo, a strong cooperative therapeutic effect of photo/chemo/immunotherapy was observed with high tumor inhibition rate (95.3 ± 2.05%). In conclusion, AB@LM exhibits excellent antitumor efficacy by intelligently mimicking the abilities of macrophages. A promising therapeutic strategy for tumor treatment based on imitating macrophages was provided in this study.


Asunto(s)
Neoplasias Colorrectales , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Nanopartículas , Puntos Cuánticos , Línea Celular Tumoral , Neoplasias Colorrectales/tratamiento farmacológico , Quinasa 4 Dependiente de la Ciclina/farmacología , Humanos , Inmunoterapia , Macrófagos , Fósforo/farmacología , Puntos Cuánticos/uso terapéutico , Microambiente Tumoral
11.
Adv Sci (Weinh) ; 9(9): 2101472, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35356152

RESUMEN

Eliminating primary tumor ("roots") and inhibiting associated-circulating tumor cells (associated-CTCs, "seeds") are vital issues that need to be urgently addressed in cancer therapy. Associated-CTCs, which include single CTCs, CTC clusters, and CTC-neutrophil clusters, are essential executors in metastasis and the cause of metastasis-related death in cancer patients. Herein, a "roots and seeds" multipoint costriking nanodevice (GV-Lipo/sorafenib (SF)/digitoxin (DT)) is developed to eliminate primary tumors and inhibit the spread of associated-CTCs for enhancing metastasis inhibition and the therapeutic effect on hepatocellular carcinoma (HCC). GV-Lipo/SF/DT eliminates primary tumor cells by the action of SF, thus reducing CTC production at the roots and improving the therapeutic effect on HCC. GV-Lipo/SF/DT inhibits associated-CTCs effectively via the enhanced identification and capture effects of glypican-3 and/or vascular cell adhesion molecule 1 (VCAM1) targeting, dissociating CTC clusters using DT, blocking the formation of CTC-neutrophil clusters using anti-VCAM1 monoclonal antibody, and killing CTCs with SF. It is successfully verified that GV-Lipo/SF/DT increases the CTC elimination efficiency in vivo, thus effectively preventing metastasis, and shows enhanced antitumor efficacy in both an H22-bearing tumor model and orthotopic HCC models. Overall, the "roots and seeds" multipoint costriking strategy may open a new cancer treatment model for the clinic.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Neoplásicas Circulantes , Carcinoma Hepatocelular/tratamiento farmacológico , Recuento de Células , Línea Celular Tumoral , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología
12.
Asian J Pharm Sci ; 17(1): 129-138, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35261649

RESUMEN

Nanomedicine has made great progress in the targeted therapy of cancer. Here, we established a novel drug-mate strategy by studying the formulation of nanodrugs at the molecular level. In the drug-mate combination, the drug is a hydrophobic drug that is poorly soluble in water, and the mate is an amphiphilic small molecule (SMA) that has both hydrophilic and lipophilic properties. We proposed that the hydrophobic drug could co-assemble with a suitable SMA on a nanoscale without additive agents. The proof-of-concept methodology and results were presented to support our hypothesis. We selected five hydrophobic drugs and more than ten amphiphilic small molecules to construct a library. Through molecular dynamic simulation and quantum chemistry computation, we speculated that the formation of nanoassemblies was related to the binding energy of the drug-mate, and the drug-mate interaction must overcome drug-drug interaction. Furthermore, the obtained SF/VECOONa nanoassemblieswas selected as a model, which had an ultra-high drug loading content (46%), improved pharmacokinetics, increased bioavailability, and enhanced therapeutic efficacy. In summary, the drug-mate strategy is an essential resource to design exact SMA for many hydrophobic drugs and provides a reference for the design of a carrier-free drug delivery system.

13.
ACS Nano ; 16(3): 4263-4277, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35179349

RESUMEN

Tumor infiltrating B cells (TIBs)-dependent immunotherapy has emerged as a promising method for tumor treatment. Depleting TIBs to boost antitumor immunity is a highly desirable yet challenging approach to TIBs-dependent immunotherapy. Herein, a tumor immune-microenvironment reshaped hybrid nanocage CPN-NLI/MLD coloaded with the Bruton's tyrosine kinase inhibitor ibrutinib, and cytotoxic drug docetaxel was developed for stepwise targeting TIBs and tumor cells, respectively. The tumor microenvironment responsive CPN-NLI/MLD promoted charge reversal and size reduction under acidic conditions (pH < 6.5). The accumulation of CPN-NLI/MLD in tumor tissues was achieved through CD13 targeting, and cellular uptake was increased due to the differ-targeting delivery. Targeting of docetaxel to tumor cells was achieved by the interaction of α-MSH modified on inner docetaxel-particle MLD and melanocortin-1 receptor on the surface of tumor cells. Targeting of ibrutinib to TIBs was achieved by the interaction of Neu5Ac modified on inner ibrutinib-particle NLI and CD22 on the surface of TIBs. The boosted antitumor immunity was achieved mainly by the inhibition of Bruton's tyrosine kinase activation mediated by ibrutinib, which reduced the proportion of TIBs, enhanced infiltration of CD8+ and CD4+ T cells, increased the secretion of immunogenic cytokines including IL-2 and IFN-γ, and inhibited the proliferation of regulatory T cells and secretion of immunosuppressive cytokines including IL-10, IL-4, and TGF-ß. Furthermore, CPN-NLI/MLD improved the antitumor efficiency of chemoimmunotherapy by reshaping tumor immune-microenvironment by TIBs depletion. Taken together, CPN-NLI/MLD represents a promising method for effective tumor treatment and combination therapy by TIBs-dependent immunotherapy.


Asunto(s)
Neoplasias , Microambiente Tumoral , Línea Celular Tumoral , Citocinas , Docetaxel/farmacología , Docetaxel/uso terapéutico , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico
14.
J Control Release ; 336: 621-634, 2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34246701

RESUMEN

Immune checkpoint antibodies have emerged as novel therapeutics, while many patients are refractory. Researchers had identified tumor-associated macrophages (TAMs) is the pivotal factor involved in immune resistance and that manipulation of TAMs functions would improve the immunotherapies effectively. NF-κB pathway was one of the master regulators in TAMs manipulation. Inhibition of NF-κB pathway could achieve both re-polarization M2 TAMs and downregulation the expression of programmed cell death protein 1 (PD-1) ligand 1 (PD-L1) on TAMs to improve the effect of immunotherapies. Here, IMD-0354, inhibitor of NF-κB pathway was loaded in mannose modified lipid nanoparticles (M-IMD-LNP). Then, PD-1 antibody and M-IMD-LNP were co-loaded in matrix metalloproteinase 2 (MMP2) responsive and tumor target nanogels (P/ML-NNG). P/ML-NNG could co-deliver drugs to tumor site, disintegrated by MMP2 and release drugs to different targets. Evaluation of PD-1 expression, inhibition of NF-κB pathway, expression of PD-L1 on M2 TAMs and M2 TAMs re-polarization demonstrated that P/ML-NNG could block the PD-1/PD-L1 and NF-κB pathways simultaneously. Evaluation of CD4 + T cells, CD8 + T cells, Tregs, cytokines and antitumor immunity confirmed that IMD-0354 could improve the immunotherapies effectively. Those results provided forceful references for tumor immunetherapy.


Asunto(s)
Metaloproteinasa 2 de la Matriz , Macrófagos Asociados a Tumores , Humanos , Inmunoterapia , FN-kappa B , Microambiente Tumoral
15.
Int J Nanomedicine ; 16: 4161-4173, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34168446

RESUMEN

PURPOSE: Specific targeting receptors for efficiently capturing and applicable nanodevice for separating and instant observing of circulating tumour cells (CTC) are critical for early diagnosis of cancer. However, the existing CTC detection system based on epithelial cell adhesion molecule (EpCAM) was seriously limited by low expression and poor specificity of targeting receptors, and not instant observation in clinical application. METHODS: Herein, an alternative glypican-3 (GPC3)-based immunomagnetic fluorescent system (C6/MMSN-GPC3) for high-specific isolation and instant observation of CTC from hepatocellular carcinoma (HCC) patients' peripheral blood was developed. The high-specific HCC targeting receptor, GPC3, was employed for improving the sensitivity and accuracy in CTC detection. GPC3 monoclonal antibody (mAb) was linked to immunomagnetic mesoporous silica for specific targeting capture and separate CTC, and fluorescent molecule coumarin-6 (C6) was loaded for instant detection of CTC. RESULTS: The cell recovery (%) of C6/MMSN-GPC3 increased in 106 HL-60 cells (from 49.7% to 83.0%) and in whole blood (from 42% to 80.3%) compared with MACS® Beads. In clinical samples, the C6/MMSN-GPC3 could capture more CTC in the 13 cases of HCC patients and the capture efficiency was improved by 83.3%-350%. Meanwhile, the capture process of C6/MMSN-GPC3 was harmless, facilitating for the subsequent culture. Significantly, the C6/MMSN-GPC3 achieved the high-specific isolation and instant observation of CTC from HCC patients' blood samples, and successfully separated CTC from one patient with early stage of HCC (Stage I) and one post-surgery patient, further indicating the potential ability of C6/MMSN-GPC3 for HCC early diagnosis and prognosis evaluation. CONCLUSION: Our study provides a feasible glypican-3 (GPC3)-based immunomagnetic fluorescent system (C6/MMSN-GPC3) for high-specific isolation and instant observation of HCC CTC.


Asunto(s)
Carcinoma Hepatocelular/patología , Separación Celular/instrumentación , Glipicanos/metabolismo , Neoplasias Hepáticas/patología , Nanotecnología/instrumentación , Células Neoplásicas Circulantes/patología , Adulto , Carcinoma Hepatocelular/sangre , Fluorescencia , Humanos , Neoplasias Hepáticas/sangre , Masculino , Persona de Mediana Edad
16.
ACS Appl Mater Interfaces ; 13(19): 22213-22224, 2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-33955746

RESUMEN

Lymph nodes are the main sites for immune activation and surveillance. Effective delivery of immunomodulators into lymph nodes to trigger antitumor immunity is essential for cancer treatment. Here, we propose a lymph node delivery strategy to modulate the immune response by activating cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells simultaneously. Novel pH/redox dual-sensitive micelles were prepared using poly(l-histidine)-poly(ethylene glycol) (PLH-PEG) as a skeleton, which can effectively deliver immunomodulators to the lymph nodes due to their suitable particle size. At 48 h after subcutaneous injection, the accumulation efficiency in lymph nodes increased 8.12-fold compared with the control group. Subsequently, Trp2/CpG-coloaded pH/redox dual-sensitive micelles (Trp2/CpG-NPs) acted on antigen-presenting cells, fully promoting CTL activation through dendritic cell antigen cross-presentation and macrophage repolarization. IL-15-loaded pH/redox dual-sensitive micelles (IL-15-NPs) were developed to activate the killing effect of NK cells by interacting with IL-15 receptors. In the tumor-bearing mice model, this lymph node delivery strategy showed significant antitumor efficiency and the tumor inhibition rate reached 93.76%. Meanwhile, the infiltration of CTLs and NK cells in tumor tissues increased, and the immunosuppressive microenvironment was relieved by the repolarization of macrophages from M2-type to M1-type. Overall, this study highlighted the potential of the lymph node delivery strategy for cancer immunotherapy.


Asunto(s)
Inmunoterapia/métodos , Células Asesinas Naturales/inmunología , Ganglios Linfáticos/inmunología , Activación de Linfocitos , Neoplasias/terapia , Linfocitos T Citotóxicos/inmunología , Animales , Línea Celular Tumoral , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Ensayos Antitumor por Modelo de Xenoinjerto
17.
PLoS One ; 15(12): e0242322, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33296382

RESUMEN

In this paper, a (Fe50Mn30Co10Cr10)100-xCx high-entropy alloy (HEA) was successfully prepared by using the vacuum arc melting method. The peak shape analysis of the X-ray diffraction patterns, the EBSD observations, and the EDS spectra of the alloys with different compositions show that the characteristics of the dendrites and the hard phase, Cr23C6, into the initial single-phase face-centered cubic (FCC) matrix becomes gradually visible as the carbon content increases from 0 to 4%. The crystal phase variations lead to a non-linear orientation of the microstructure, to a refinement of the grains, and to a higher elastic modulus. This study presents the solid saturation limit of the interstitial carbon atoms in such alloys and establishes an empirical relation between an alloy's elastic modulus and its carbon content.


Asunto(s)
Aleaciones/química , Carbono/química , Cromo/química , Cobalto/química , Módulo de Elasticidad , Entropía , Hierro/química , Manganeso/química , Ensayo de Materiales , Difracción de Rayos X
18.
Adv Sci (Weinh) ; 7(18): 2000906, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32999836

RESUMEN

Combination therapy is a current hot topic in cancer treatment. Multiple synergistic effects elicited by combined drugs are essential in improving antitumor activity. Herein, a pH-triggered charge and size dual switchable nanocage co-loaded with abemaciclib and IMD-0354 (PA/PI-ND) is reported, exhibiting a novel triple-interlocked combination of chemotherapy, immunotherapy, and chemoimmunotherapy. The charge reversal polymer NGR-poly(ethylene glycol)-poly(l-lysine)-dimethylmaleic anhydride (NGR-PEG-PLL-DMA, ND) in PA/PI-ND promotes the pH-triggered charge reversal from negative to positive and size reduction from about 180 to 10 nm in an acidic tumor microenvironment, which greatly enhances cellular uptake and tumor tissue deep penetration. With the PA/PI-ND triple-interlocked combination therapy, the chemotherapeutic effect is enhanced by the action of abemaciclib to induce cell cycle arrest in the G1 phase, together with the reduction in cyclin D levels caused by IMD-0354. The dual anti-tumor promoting immunotherapy is achieved by abemaciclib selectively inhibiting the proliferation of regulatory T cells (Tregs) and by IMD-0354 promoting tumor-associated macrophage (TAM) repolarization from an M2 to M1 phenotype. Furthermore, PA/PI-ND has improved anti-tumor efficiency resulting from the third synergistic effect provided by chemoimmunotherapy. Taken together, PA/PI-ND is a promising strategy to guide the design of future drug delivery carriers and cancer combination therapy.

19.
ACS Appl Mater Interfaces ; 12(34): 38499-38511, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-32805954

RESUMEN

The tumor penetration of nanomedicines constitutes a great challenge in the treatment of solid tumors, leading to the highly compromised therapeutic efficacy of nanomedicines. Here, we developed small morph nanoparticles (PDMA) by modifying polyamidoamine (PAMAM) dendrimers with dimethylmaleic anhydride (DMA). PDMA achieved deep tumor penetration via an active, energy-dependent, caveolae-mediated transcytosis, which circumvented the obstacles in the process of deep penetration. PDMA remained negatively charged under normal physiological conditions and underwent rapid charge reversal from negative to positive under acidic conditions in the tumor microenvironment (pH < 6.5), which enhanced their uptake by tumor cells and their deep penetration into tumor tissues in vitro and in vivo. The deep tumor penetration of PDMA was achieved mainly by caveolae-mediated transcytosis, which could be attributed to the small sizes (5-10 nm) and positive charge of the morphed PDMA. In vivo studies demonstrated that PDMA exhibited increased tumor accumulation and doxorubicin-loaded PDMA (PDMA/DOX) showed better antitumor efficacy. Overall, the small morph PDMA for enhanced deep tumor penetration via caveolae-mediated transcytosis could provide new inspiration for the design of anticancer drug delivery systems.


Asunto(s)
Caveolas/metabolismo , Nanopartículas/química , Poliaminas/química , Transcitosis/fisiología , Animales , Línea Celular Tumoral , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/metabolismo , Doxorrubicina/uso terapéutico , Portadores de Fármacos/química , Colorantes Fluorescentes/química , Humanos , Concentración de Iones de Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Nanopartículas/metabolismo , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Tamaño de la Partícula , Distribución Tisular , Trasplante Homólogo
20.
Nanoscale ; 12(32): 16851-16863, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32761008

RESUMEN

RNA interference (RNAi)-based immunotherapy combined with chemotherapy has emerged as a promising therapeutic strategy for cancer treatment. The transport of siRNA and small molecular agents from the tumor vasculature to a separate therapeutic target has been impeded by multiple physiological barriers, which has restricted the development of RNAi-based chemoimmunotherapy. A nanotechnology-based co-delivery system was superior in improving the co-localization of gene and drug in the same tumor cell, while a co-delivery system for chemoimmunotherapy was expected to realize xenotype cell-targeting, which means delivering immunotherapy agents and chemotherapy drugs to immune cells and tumor cells, respectively. A multilayer structure co-delivery system was outstanding in crossing these barriers and targeting different cells in tumor tissue. Herein, a "layer peeling" co-delivery system (CDMPR) was developed with co-loaded IKKß-siRNA and doxorubicin (DOX), in which IKKß-siRNA was used for RNAi-based tumor associated macrophages (TAMs) polarization for immunotherapy and DOX was used for chemotherapy. A transwell assay in vitro and an immunofluorescence assay in Hepa1-6 tumor-bearing mice indicated that CDMPR exhibited a pH-sensitive disassembly ability in tumor tissue, IKKß-siRNA was precisely delivered to M2-type TAMs and DOX was internalized into tumor cells. An M2-type TAMs polarization ability study of CDMPR demonstrated that M2-type TAMs could be polarized to M1-type TAMs by CDMPR in vitro and in vivo. In Hepa1-6 tumor-bearing mice, CDMPR exhibited improved antitumor efficiency with M2-type re-polarization ability by the precise delivery of IKKß-siRNA and DOX to M2-type TAMs and tumor cells, respectively. Consequently, the combination of RNAi-based TAMs polarization and chemotherapy by the "layer peeling" co-delivery system would achieve an enhanced chemoimmunotherapy effect, which provides a novel strategy to improve cancer therapeutic effects.


Asunto(s)
Inmunoterapia , Macrófagos Asociados a Tumores , Animales , Doxorrubicina/farmacología , Ratones , Interferencia de ARN , ARN Interferente Pequeño
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA