Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurosci Bull ; 39(4): 617-630, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36342657

RESUMEN

Malfunction of the ventral subiculum (vSub), the main subregion controlling the output connections from the hippocampus, is associated with major depressive disorder (MDD). Although the vSub receives cholinergic innervation from the medial septum and diagonal band of Broca (MSDB), whether and how the MSDB-to-vSub cholinergic circuit is involved in MDD is elusive. Here, we found that chronic unpredictable mild stress (CUMS) induced depression-like behaviors with hyperactivation of vSub neurons, measured by c-fos staining and whole-cell patch-clamp recording. By retrograde and anterograde tracing, we confirmed the dense MSDB cholinergic innervation of the vSub. In addition, transient restraint stress in CUMS increased the level of ACh in the vSub. Furthermore, chemogenetic stimulation of this MSDB-vSub innervation in ChAT-Cre mice induced hyperactivation of vSub pyramidal neurons along with depression-like behaviors; and local infusion of atropine, a muscarinic receptor antagonist, into the vSub attenuated the depression-like behaviors induced by chemogenetic stimulation of this pathway and CUMS. Together, these findings suggest that activating the MSDB-vSub cholinergic pathway induces hyperactivation of vSub pyramidal neurons and depression-like behaviors, revealing a novel circuit underlying vSub pyramidal neuronal hyperactivation and its associated depression.


Asunto(s)
Prosencéfalo Basal , Trastorno Depresivo Mayor , Ratas , Ratones , Animales , Ratas Sprague-Dawley , Trastorno Depresivo Mayor/metabolismo , Depresión , Hipocampo/metabolismo , Colinérgicos
2.
Neurobiol Stress ; 21: 100492, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36532368

RESUMEN

The nucleus accumbens (NAc) is a crucial region in the reward circuit and is related to anhedonia, the pivotal symptom of major depression disorder (MDD). Deep brain stimulation (DBS) of NAc has been identified as an effective treatment for severe refractory major depression; however, the underlying mechanism of NAc-DBS in MDD treatment remains elusive. Using the chronic unpredictable mild stress (CUMS) mouse model, we found NAc-DBS rescued depression-like behaviors, and reversed high gamma oscillation reduction and neurogenesis impairment in the dorsal dentate gyrus. Inactivation of parvalbumin (PV)-positive interneurons (PVI) in the dorsal DG led to depression-like behavior and decreased adult neurogenesis. Further investigation elucidated the VTA-DG GABAergic projection and CA1-NAc projection might jointly participate in NAc-DBS therapeutic mechanism. Disinhibition of the VTA-DG GABAergic projection had an antidepressant effect, and inhibition of the CA1-NAc projection reduced the antidepressant effect of DBS-NAc. Moreover, disinhibiting the VTA-DG GABAergic projection or activating the CA1-NAc projection could increase PVI activity in the dorsal DG. These results showed PVI in the dorsal DG as an essential target in depression and NAc-DBS antidepressant mechanisms.

3.
Stem Cell Reports ; 16(7): 1777-1791, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34171285

RESUMEN

Central nervous system injury and neurodegenerative diseases cause irreversible loss of neurons. Overexpression of exogenous specific transcription factors can reprogram somatic cells into functional neurons for regeneration and functional reconstruction. However, these practices are potentially problematic due to the integration of vectors into the host genome. Here, we showed that the activation of endogenous genes Ngn2 and Isl1 by CRISPRa enabled reprogramming of mouse spinal astrocytes and embryonic fibroblasts to motor neurons. These induced neurons showed motor neuronal morphology and exhibited electrophysiological activities. Furthermore, astrocytes in the spinal cord of the adult mouse can be converted into motor neurons by this approach with high efficiency. These results demonstrate that the activation of endogenous genes is sufficient to induce astrocytes into functional motor neurons in vitro and in vivo. This direct neuronal reprogramming approach may provide a novel potential therapeutic strategy for treating neurodegenerative diseases and spinal cord injury.


Asunto(s)
Astrocitos/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular , Proteínas con Homeodominio LIM/metabolismo , Neuronas Motoras/citología , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Animales , Axones/metabolismo , Embrión de Mamíferos/citología , Fibroblastos/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones Endogámicos C57BL , Ratones Transgénicos , Nervio Ciático/citología , Médula Espinal/citología , Sustancia Blanca/citología
4.
Front Cell Dev Biol ; 7: 236, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31681768

RESUMEN

Activity-dependent synaptic plasticity, i.e., long-term potentiation (LTP), long-term depression (LTD) and LTP reversal, is generally thought to make up the cellular mechanism underlying learning and memory in the mature brain, in which N-methyl-D-aspartate subtype of glutamate (NMDA) receptors and neurogenesis play important roles. LTP reversal may be the mechanism of forgetting and may mediate many psychiatric disorders, such as schizophrenia, but the specific mechanisms underlying these disorders remain unclear. In addition, LTP reversal during the development of adult-born dentate granule cells (DGCs) remains unknown. We found that the expression of the NMDA receptor subunits NR2A and NR2B displayed dynamic changes during the development of postnatal individuals and the maturation of adult-born neurons and was coupled with the change in LTP reversal. The susceptibility of LTP reversal progressively increases with the rise in the expression of NR2A during the development of postnatal individual and adult-born neurons. In addition, NMDA receptor subunits NR2A, but not NR2B, mediated LTP reversal in the DGCs of the mouse hippocampus.

5.
Front Cell Neurosci ; 13: 303, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31354430

RESUMEN

[This corrects the article DOI: 10.3389/fncel.2017.00013.].

6.
Cell Rep ; 26(8): 2052-2063.e4, 2019 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-30784588

RESUMEN

Retroactive interference (RI) occurs when new incoming information impairs an existing memory, which is one of the primary sources of forgetting. Although long-term potentiation (LTP) reversal shows promise as the underlying neural correlate, the key molecules that control the sensitivity of memory circuits to RI are unknown, and the developmental trajectory of RI effects is unclear. Here we found that depotentiation in the hippocampal dentate gyrus (DG) depends on GluN2A-containing NMDA receptors (NMDARs). The susceptibility of LTP to disruption progressively increases with the rise in the GluN2A/GluN2B ratio during development. The vulnerability of hippocampus-dependent memory to interference from post-learning novelty exploration is subject to similar developmental regulation by NMDARs. Both GluN2A overexpression and GluN2B downregulation in the DG promote RI-induced forgetting. Altogether, our results suggest that a switch in GluN2 subunit predominance may confer age-related differences to depotentiation and underlie the developmental decline in memory resistance to RI.


Asunto(s)
Giro Dentado/metabolismo , Memoria , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Giro Dentado/crecimiento & desarrollo , Giro Dentado/fisiología , Femenino , Potenciación a Largo Plazo , Masculino , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Multimerización de Proteína
7.
Nat Commun ; 8(1): 1676, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29162816

RESUMEN

Choline acetyltransferase neurons in the vertical diagonal band of Broca (vChATs) degenerate in the early stage of Alzheimer's disease (AD). Here, we report that vChATs directly innervate newly generated immature neurons (NGIs) in the dorsal hippocampus (dNGIs) of adult mice and regulate both the dNGIs survival and spatial pattern separation. In a mouse model that exhibits amyloid-ß plaques similar to AD patients, cholinergic synaptic transmission, dNGI survival and spatial pattern separation are impaired. Activation of vChATs with theta burst stimulation (TBS) that alleviates the decay in cholinergic synaptic transmission effectively protects against spatial pattern separation impairments in the AD mice and this protection was completely abolished by inhibiting the dNGIs survival. Thus, the impairments of pattern separation-associated spatial memory in AD mice are in part caused by degeneration of cholinergic synaptic transmission that modulates the dNGIs survival.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Neuronas Colinérgicas/fisiología , Modelos Animales de Enfermedad , Hipocampo/fisiopatología , Memoria Espacial/fisiología , Sinapsis/fisiología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Neuronas Colinérgicas/metabolismo , Banda Diagonal de Broca/metabolismo , Banda Diagonal de Broca/fisiopatología , Células HEK293 , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Sinapsis/metabolismo
8.
Front Cell Neurosci ; 11: 13, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28197080

RESUMEN

Hippocampal neurogenesis persists throughout adult life and plays an important role in learning and memory. Although the influence of physical exercise on neurogenesis has been intensively studied, there is controversy in regard to how the impact of exercise may vary with its regime. Less is known about how distinct exercise paradigms may differentially affect the learning behavior. Here we found that, chronic moderate treadmill running led to an increase of cell proliferation, survival, neuronal differentiation, and migration. In contrast, intense running only promoted neuronal differentiation and migration, which was accompanied with lower expressions of vascular endothelial growth factor, brain-derived neurotrophic factor, insulin-like growth factor 1, and erythropoietin. In addition, the intensely but not mildly exercised animals exhibited a lower mitochondrial activity in the dentate gyrus. Correspondingly, neurogenesis induced by moderate but not intense exercise was sufficient to improve the animal's ability in spatial pattern separation. Our data indicate that the effect of exercise on spatial learning is intensity-dependent and may involve mechanisms other than a simple increase in the number of new neurons.

9.
J Neurosci ; 36(42): 10843-10852, 2016 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-27798139

RESUMEN

Excitatory pyramidal neurons in the entorhinal cortical layer II region (ECIIPN) form functional excitatory synapses with CA1 parvalbumin inhibitory neurons (CA1PV) and undergo selective degeneration in the early stages of Alzheimer's disease (AD). Here, we show that death-associated protein kinase 1 (DAPK1) is selectively activated in ECIIPN of AD mice. Inhibition of DAPK1 by deleting a catalytic domain or a death domain of DAPK1 rescues the ECIIPN-CA1PV synaptic loss and improves spatial learning and memory in AD mice. This study demonstrates that activation of DAPK1 in ECIIPN contributes to a memory loss in AD and hence warrants a promising target for the treatment of AD. SIGNIFICANCE STATEMENT: Our recent study reported that excitatory pyramidal neurons in the entorhinal cortical layer II region (ECIIPN) target to CA1 parvalbumin-type inhibitory neurons (CA1PV) at a direct pathway and are one of the most vulnerable brain cells that are selectively degenerated in the early stage of Alzheimer's disease (AD). Our present study shows that death-associated protein kinase 1 (DAPK1) is selectively activated in ECIIPN of AD mice. Inhibition of DAPK1 by deleting a catalytic domain or a death domain of DAPK1 rescues the ECIIPN-CA1PV synaptic loss and improves spatial learning and memory in the early stage of AD. These data not only demonstrate a crucial molecular event for synaptic degeneration but also provide a therapeutic target for the treatment of AD.


Asunto(s)
Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/fisiopatología , Región CA1 Hipocampal/fisiopatología , Proteínas Quinasas Asociadas a Muerte Celular/genética , Corteza Entorrinal/fisiopatología , Sinapsis , Activación Metabólica , Enfermedad de Alzheimer/psicología , Animales , Fenómenos Electrofisiológicos , Humanos , Masculino , Aprendizaje por Laberinto , Memoria , Ratones , Ratones Transgénicos , Actividad Motora/genética , Parvalbúminas/metabolismo , Equilibrio Postural/genética , Células Piramidales/fisiología
10.
Proc Natl Acad Sci U S A ; 113(37): E5501-10, 2016 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-27573822

RESUMEN

Rewarding experiences are often well remembered, and such memory formation is known to be dependent on dopamine modulation of the neural substrates engaged in learning and memory; however, it is unknown how and where in the brain dopamine signals bias episodic memory toward preceding rather than subsequent events. Here we found that photostimulation of channelrhodopsin-2-expressing dopaminergic fibers in the dentate gyrus induced a long-term depression of cortical inputs, diminished theta oscillations, and impaired subsequent contextual learning. Computational modeling based on this dopamine modulation indicated an asymmetric association of events occurring before and after reward in memory tasks. In subsequent behavioral experiments, preexposure to a natural reward suppressed hippocampus-dependent memory formation, with an effective time window consistent with the duration of dopamine-induced changes of dentate activity. Overall, our results suggest a mechanism by which dopamine enables the hippocampus to encode memory with reduced interference from subsequent experience.


Asunto(s)
Giro Dentado/metabolismo , Dopamina/metabolismo , Hipocampo/metabolismo , Memoria/fisiología , Animales , Conducta de Elección/fisiología , Giro Dentado/fisiología , Neuronas Dopaminérgicas/metabolismo , Hipocampo/fisiología , Aprendizaje/fisiología , Memoria Episódica , Recuerdo Mental/fisiología , Ratones , Ratones Transgénicos , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Recompensa
11.
Elife ; 4: e07871, 2015 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-26473971

RESUMEN

NMDA receptor (NMDAR)-dependent forms of synaptic plasticity are thought to underlie the assembly of developing neuronal circuits and to play a crucial role in learning and memory. It remains unclear how NMDAR might contribute to the wiring of adult-born granule cells (GCs). Here we demonstrate that nascent GCs lacking NMDARs but rescued from apoptosis by overexpressing the pro-survival protein Bcl2 were deficient in spine formation. Insufficient spinogenesis might be a general cause of cell death restricted within the NMDAR-dependent critical time window for GC survival. NMDAR loss also led to enhanced mushroom spine formation and synaptic AMPAR activity throughout the development of newborn GCs. Moreover, similar elevated synapse maturation in the absence of NMDARs was observed in neonate-generated GCs and CA1 pyramidal neurons. Together, these data suggest that NMDAR operates as a molecular monitor for controlling the activity-dependent establishment and maturation rate of synaptic connections between newborn neurons and others.


Asunto(s)
Encéfalo/citología , Diferenciación Celular , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Ratones Noqueados
12.
Nutrition ; 31(7-8): 1025-30, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26059378

RESUMEN

OBJECTIVE: Supplementation with docosahexaenoic acid (DHA), an ω-3 polyunsaturated fatty acid (PUFA), recently has become popular for the amelioration of depression; however the molecular mechanism of DHA action remains unclear. The aim of this study was to investigate the mechanism underlying the antidepressant effect of DHA by evaluating Gsα localization in lipid raft and the activity of adenylate cyclase in an in vitro glioma cell model. METHODS: Lipid raft fractions from C6 glioma cells treated chronically with DHA were isolated by sucrose gradient ultracentrifugation. The content of Gsα in lipid raft was analyzed by immunoblotting and colocalization of Gsα with lipid raft was subjected to confocal microscopic analysis. The intracellular cyclic adenosine monophosphate (cAMP) level was determined by cAMP immunoassay kit. RESULTS: DHA decreased the amount of Gsα in lipid raft, whereas whole cell lysate Gsα was not changed. Confocal microscopic analysis demonstrated that colocalization of Gsα with lipid raft was decreased, whereas DHA increased intracellular cAMP accumulation in a dose-dependent manner. Interestingly, we found that DHA increased the lipid raft level, instead of disrupting it. CONCLUSIONS: The results of this study suggest that DHA may exert its antidepressant effect by translocating Gsα from lipid raft and potentiating the activity of adenylate cyclase. Importantly, the reduced Gsα in lipid raft by DHA is independent of disruption of lipid raft. Overall, the study provides partial preclinical evidence supporting a safe and effective therapy using DHA for depression.


Asunto(s)
Adenilil Ciclasas/metabolismo , Antidepresivos/farmacología , Ácidos Docosahexaenoicos/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Microdominios de Membrana/efectos de los fármacos , Animales , Línea Celular Tumoral , AMP Cíclico/análisis , Microdominios de Membrana/patología , Ratas , Transducción de Señal/efectos de los fármacos
13.
Cell Metab ; 21(4): 628-36, 2015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25863252

RESUMEN

Neurons utilize mitochondrial oxidative phosphorylation (OxPhos) to generate energy essential for survival, function, and behavioral output. Unlike most cells that burn both fat and sugar, neurons only burn sugar. Despite its importance, how neurons meet the increased energy demands of complex behaviors such as learning and memory is poorly understood. Here we show that the estrogen-related receptor gamma (ERRγ) orchestrates the expression of a distinct neural gene network promoting mitochondrial oxidative metabolism that reflects the extraordinary neuronal dependence on glucose. ERRγ(-/-) neurons exhibit decreased metabolic capacity. Impairment of long-term potentiation (LTP) in ERRγ(-/-) hippocampal slices can be fully rescued by the mitochondrial OxPhos substrate pyruvate, functionally linking the ERRγ knockout metabolic phenotype and memory formation. Consistent with this notion, mice lacking neuronal ERRγ in cerebral cortex and hippocampus exhibit defects in spatial learning and memory. These findings implicate neuronal ERRγ in the metabolic adaptations required for memory formation.


Asunto(s)
Hipocampo/fisiología , Potenciación a Largo Plazo/fisiología , Mitocondrias/metabolismo , Neuronas/metabolismo , Receptores de Estrógenos/metabolismo , Análisis de Varianza , Animales , Inmunoprecipitación de Cromatina , Galactósidos , Técnicas de Inactivación de Genes , Glucólisis/fisiología , Hipocampo/metabolismo , Indoles , Memoria/fisiología , Ratones , Análisis por Micromatrices , Ácido Pirúvico , Reacción en Cadena en Tiempo Real de la Polimerasa , Aprendizaje Espacial/fisiología
14.
Nat Commun ; 5: 5627, 2014 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-25517983

RESUMEN

Astrocytes provide neuroprotective effects against degeneration of dopaminergic (DA) neurons and play a fundamental role in DA differentiation of neural stem cells. Here we show that light illumination of astrocytes expressing engineered channelrhodopsin variant (ChETA) can remarkably enhance the release of basic fibroblast growth factor (bFGF) and significantly promote the DA differentiation of human embryonic stem cells (hESCs) in vitro. Light activation of transplanted astrocytes in the substantia nigra (SN) also upregulates bFGF levels in vivo and promotes the regenerative effects of co-transplanted stem cells. Importantly, upregulation of bFGF levels, by specific light activation of endogenous astrocytes in the SN, enhances the DA differentiation of transplanted stem cells and promotes brain repair in a mouse model of Parkinson's disease (PD). Our study indicates that astrocyte-derived bFGF is required for regulation of DA differentiation of the stem cells and may provide a strategy targeting astrocytes for treatment of PD.


Asunto(s)
Astrocitos/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Neuronas Dopaminérgicas/patología , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Enfermedad de Parkinson/terapia , Trasplante de Células Madre , Animales , Astrocitos/metabolismo , Astrocitos/efectos de la radiación , Astrocitos/trasplante , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Factor 2 de Crecimiento de Fibroblastos/genética , Regulación de la Expresión Génica , Humanos , Luz , Ratones , Células-Madre Neurales/metabolismo , Células-Madre Neurales/patología , Neurogénesis/genética , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Ingeniería de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Sustancia Negra/metabolismo , Sustancia Negra/patología
15.
Nat Med ; 19(4): 473-80, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23524343

RESUMEN

Sorting nexin 27 (SNX27), a brain-enriched PDZ domain protein, regulates endocytic sorting and trafficking. Here we show that Snx27(-/-) mice have severe neuronal deficits in the hippocampus and cortex. Although Snx27(+/-) mice have grossly normal neuroanatomy, we found defects in synaptic function, learning and memory and a reduction in the amounts of ionotropic glutamate receptors (NMDA and AMPA receptors) in these mice. SNX27 interacts with these receptors through its PDZ domain, regulating their recycling to the plasma membrane. We demonstrate a concomitant reduced expression of SNX27 and CCAAT/enhancer binding protein ß (C/EBPß) in Down's syndrome brains and identify C/EBPß as a transcription factor for SNX27. Down's syndrome causes overexpression of miR-155, a chromosome 21-encoded microRNA that negatively regulates C/EBPß, thereby reducing SNX27 expression and resulting in synaptic dysfunction. Upregulating SNX27 in the hippocampus of Down's syndrome mice rescues synaptic and cognitive deficits. Our identification of the role of SNX27 in synaptic function establishes a new molecular mechanism of Down's syndrome pathogenesis.


Asunto(s)
Síndrome de Down/fisiopatología , Receptores de Glutamato/metabolismo , Nexinas de Clasificación/fisiología , Sinapsis/fisiología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica , Proteína C-Reactiva/fisiología , Proteína beta Potenciadora de Unión a CCAAT , Proteínas Potenciadoras de Unión a CCAAT/fisiología , Corteza Cerebral/citología , Corteza Cerebral/fisiopatología , Cisplatino , Regulación hacia Abajo , Femenino , Hipocampo/citología , Hipocampo/fisiopatología , Humanos , Ifosfamida , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/fisiología , Mitomicina , Proteínas del Tejido Nervioso/fisiología , Factores de Transcripción/fisiología
16.
Proc Natl Acad Sci U S A ; 109(31): 12556-61, 2012 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-22814375

RESUMEN

The finding that certain somatic cells can be directly converted into cells of other lineages by the delivery of specific sets of transcription factors paves the way to novel therapeutic applications. Here we show that human cord blood (CB) CD133(+) cells lose their hematopoietic signature and are converted into CB-induced neuronal-like cells (CB-iNCs) by the ectopic expression of the transcription factor Sox2, a process that is further augmented by the combination of Sox2 and c-Myc. Gene-expression analysis, immunophenotyping, and electrophysiological analysis show that CB-iNCs acquire a distinct neuronal phenotype characterized by the expression of multiple neuronal markers. CB-iNCs show the ability to fire action potentials after in vitro maturation as well as after in vivo transplantation into the mouse hippocampus. This system highlights the potential of CB cells and offers an alternative means to the study of cellular plasticity, possibly in the context of drug screening research and of future cell-replacement therapies.


Asunto(s)
Antígenos CD/metabolismo , Sangre Fetal/metabolismo , Glicoproteínas/metabolismo , Células-Madre Neurales/metabolismo , Péptidos/metabolismo , Proteínas Proto-Oncogénicas c-myc/biosíntesis , Factores de Transcripción SOXB1/biosíntesis , Antígeno AC133 , Animales , Antígenos CD/genética , Sangre Fetal/citología , Glicoproteínas/genética , Humanos , Ratones , Células-Madre Neurales/citología , Péptidos/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción SOXB1/genética
17.
Protein Cell ; 3(4): 251-61, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22549585

RESUMEN

In the adult brain, neural stem cells have been found in two major niches: the dentate gyrus and the subventricular zone [corrected]. Neurons derived from these stem cells contribute to learning, memory, and the autonomous repair of the brain under pathological conditions. Hence, the physiology of adult neural stem cells has become a significant component of research on synaptic plasticity and neuronal disorders. In addition, the recently developed induced pluripotent stem cell technique provides a powerful tool for researchers engaged in the pathological and pharmacological study of neuronal disorders. In this review, we briefly summarize the research progress in neural stem cells in the adult brain and in the neuropathological application of the induced pluripotent stem cell technique.


Asunto(s)
Modelos Biológicos , Células-Madre Neurales/citología , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/citología , Células Madre Pluripotentes Inducidas/metabolismo , Células-Madre Neurales/metabolismo , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/prevención & control , Neurogénesis , Transducción de Señal
18.
Nature ; 482(7384): 216-20, 2012 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-22278060

RESUMEN

Our understanding of Alzheimer's disease pathogenesis is currently limited by difficulties in obtaining live neurons from patients and the inability to model the sporadic form of the disease. It may be possible to overcome these challenges by reprogramming primary cells from patients into induced pluripotent stem cells (iPSCs). Here we reprogrammed primary fibroblasts from two patients with familial Alzheimer's disease, both caused by a duplication of the amyloid-ß precursor protein gene (APP; termed APP(Dp)), two with sporadic Alzheimer's disease (termed sAD1, sAD2) and two non-demented control individuals into iPSC lines. Neurons from differentiated cultures were purified with fluorescence-activated cell sorting and characterized. Purified cultures contained more than 90% neurons, clustered with fetal brain messenger RNA samples by microarray criteria, and could form functional synaptic contacts. Virtually all cells exhibited normal electrophysiological activity. Relative to controls, iPSC-derived, purified neurons from the two APP(Dp) patients and patient sAD2 exhibited significantly higher levels of the pathological markers amyloid-ß(1-40), phospho-tau(Thr 231) and active glycogen synthase kinase-3ß (aGSK-3ß). Neurons from APP(Dp) and sAD2 patients also accumulated large RAB5-positive early endosomes compared to controls. Treatment of purified neurons with ß-secretase inhibitors, but not γ-secretase inhibitors, caused significant reductions in phospho-Tau(Thr 231) and aGSK-3ß levels. These results suggest a direct relationship between APP proteolytic processing, but not amyloid-ß, in GSK-3ß activation and tau phosphorylation in human neurons. Additionally, we observed that neurons with the genome of one sAD patient exhibited the phenotypes seen in familial Alzheimer's disease samples. More generally, we demonstrate that iPSC technology can be used to observe phenotypes relevant to Alzheimer's disease, even though it can take decades for overt disease to manifest in patients.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/patología , Neuronas/metabolismo , Anciano de 80 o más Años , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Astrocitos/citología , Biomarcadores/metabolismo , Células Cultivadas , Reprogramación Celular , Técnicas de Cocultivo , Endosomas/metabolismo , Activación Enzimática , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Masculino , Persona de Mediana Edad , Modelos Biológicos , Neuronas/efectos de los fármacos , Neuronas/patología , Fragmentos de Péptidos/metabolismo , Fosfoproteínas/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteasas/farmacología , Proteolisis , Sinapsinas/metabolismo , Proteínas tau/metabolismo
19.
Mol Neurodegener ; 6: 85, 2011 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-22192775

RESUMEN

The hippocampus, a brain area critical for learning and memory, is especially vulnerable to damage at early stages of Alzheimer's disease (AD). Emerging evidence has indicated that altered neurogenesis in the adult hippocampus represents an early critical event in the course of AD. Although causal links have not been established, a variety of key molecules involved in AD pathogenesis have been shown to impact new neuron generation, either positively or negatively. From a functional point of view, hippocampal neurogenesis plays an important role in structural plasticity and network maintenance. Therefore, dysfunctional neurogenesis resulting from early subtle disease manifestations may in turn exacerbate neuronal vulnerability to AD and contribute to memory impairment, whereas enhanced neurogenesis may be a compensatory response and represent an endogenous brain repair mechanism. Here we review recent findings on alterations of neurogenesis associated with pathogenesis of AD, and we discuss the potential of neurogenesis-based diagnostics and therapeutic strategies for AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Hipocampo/citología , Hipocampo/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Enfermedad de Alzheimer/terapia , Animales , Modelos Animales de Enfermedad , Hipocampo/patología , Humanos , Aprendizaje/fisiología , Memoria/fisiología , Trastornos de la Memoria/fisiopatología , Células-Madre Neurales/fisiología , Neuronas/citología
20.
Proc Natl Acad Sci U S A ; 108(51): 20382-7, 2011 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-22159035

RESUMEN

Long interspersed element-1 (L1) retrotransposons compose ∼20% of the mammalian genome, and ongoing L1 retrotransposition events can impact genetic diversity by various mechanisms. Previous studies have demonstrated that endogenous L1 retrotransposition can occur in the germ line and during early embryonic development. In addition, recent data indicate that engineered human L1s can undergo somatic retrotransposition in human neural progenitor cells and that an increase in human-specific L1 DNA content can be detected in the brains of normal controls, as well as in Rett syndrome patients. Here, we demonstrate an increase in the retrotransposition efficiency of engineered human L1s in cells that lack or contain severely reduced levels of ataxia telangiectasia mutated, a serine/threonine kinase involved in DNA damage signaling and neurodegenerative disease. We demonstrate that the increase in L1 retrotransposition in ataxia telangiectasia mutated-deficient cells most likely occurs by conventional target-site primed reverse transcription and generate either longer, or perhaps more, L1 retrotransposition events per cell. Finally, we provide evidence suggesting an increase in human-specific L1 DNA copy number in postmortem brain tissue derived from ataxia telangiectasia patients compared with healthy controls. Together, these data suggest that cellular proteins involved in the DNA damage response may modulate L1 retrotransposition.


Asunto(s)
Proteínas de Ciclo Celular/genética , Proteínas de Unión al ADN/genética , Elementos de Nucleótido Esparcido Largo/genética , Células-Madre Neurales/citología , Proteínas Serina-Treonina Quinasas/genética , Retroelementos/genética , Proteínas Supresoras de Tumor/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Línea Celular , Reparación del ADN , Endonucleasas/metabolismo , Fibroblastos/citología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Ratones , Ratones Transgénicos , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...