Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Aquat Toxicol ; 225: 105552, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32615475

RESUMEN

There is scarce investigation addressing interpopulation tolerance responses to address the influence of a history of chronic stress exposure, as that occurring in polluted environments, in photoautotrophs. We evaluated ecophysiological (photosynthetic activity) and metabolic (oxidative stress and damage) responses of two populations of green macroalga Ulva compressa from polluted (Ventanas) and non-polluted (Cachagua) localions of central Chile, and exposed to controlled hypersalinity conditions of 32 (control), 42, 62 and 82 psu (practical salinity units) for 6 h, 48 h and 6 d. Both primary production (ETRmax) and photosynthetic efficiency (αETR) were generally higher in the population from Cachagua compared to Ventanas at all times and salinities. Moreover, at most experimental times and salinities the population from Ventanas had greater levels of H2O2 and lipid peroxidation that individuals from Cachagua. Total ascorbate was higher in the population of Cachagua than Ventanas at 42 and 82 psu after 6 and 48 h, respectively, while at 6 d concentrations were similar between both populations at all salinities. Total glutathione was greater in both populations after 6 h at all salinities, but at 48 h its concentrations were higher only in the population from Cachagua, a trend that was maintained at 6 d under 82 psu only. Reduced and oxidized ascorbate (ASC and DHA, respectively) and glutathione (GSH and GSSG, respectively) demonstrated similar patterns between U. compressa populations, with an increase oxidation with greater salinities but efficient recycling to maintain sufficient batch of ASC and GSH. When assessing the expression of antioxidant enzymes catalase (CAT), superoxide dismutase (SOD) and dehydroascorbate reductase (DHAR), while the population of Ventanas displayed a general trend of upregulation with increasing salinities along the experiments, U. compressa from Cachagua revealed patterns of downregulation. Results demonstrated that although both populations were still viable after the applied hypersalinities during all experimental times, biological performance was usually more affected in the population from the Ventanas than Cachagua, likely due to a depressed baseline metabolism after a long history of exposition to environmental pollution.


Asunto(s)
Ulva/fisiología , Contaminantes Químicos del Agua/toxicidad , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Catalasa/metabolismo , Chile , Contaminación Ambiental , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Oxidación-Reducción , Estrés Oxidativo , Salinidad , Algas Marinas/metabolismo , Superóxido Dismutasa/metabolismo , Ulva/enzimología
2.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540290

RESUMEN

Following the physiological complementary/parallel Celis-Plá et al., by inhibiting extracellular signal regulated kinases (ERK), c-Jun N-terminal kinases (JNK), and cytokinin specific binding protein (p38), we assessed the role of the mitogen-activated protein kinases (MAPK) pathway in detoxification responses mediated by chronic copper (10 µM) in U. compressa. Parameters were taken at 6, 24, and 48 h, and 6 days (d). H2O2 and lipid peroxidation under copper and inhibition of ERK, JNK, or p38 alone increased but recovered by the sixth day. By blocking two or more MAPKs under copper, H2O2 and lipid peroxidation decayed even below controls. Inhibition of more than one MAPK (at 6 d) caused a decrease in total glutathione (reduced glutathione (GSH) + oxidised glutathione (GSSG)) and ascorbate (reduced ascorbate (ASC) + dehydroascorbate (DHA)), although in the latter it did not occur when the whole MAPK was blocked. Catalase (CAT), superoxide dismutase (SOD), thioredoxin (TRX) ascorbate peroxidase (APX), dehydroascorbate reductase (DHAR), and glutathione synthase (GS), were downregulated when blocking more than one MAPK pathway. When one MAPK pathway was blocked under copper, a recovery and even enhancement of detoxification mechanisms was observed, likely due to crosstalk within the MAPKs and/or other signalling processes. In contrast, when more than one MAPK pathway were blocked under copper, impairment of detoxification defences occurred, demonstrating that MAPKs were key signalling mechanisms for detoxification in macroalgae.


Asunto(s)
Chlorophyta/fisiología , Cobre/metabolismo , Sistema de Señalización de MAP Quinasas , Ácido Ascórbico/metabolismo , Biodegradación Ambiental , Chlorophyta/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido
3.
Int J Mol Sci ; 20(18)2019 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-31540294

RESUMEN

There is currently no information regarding the role that whole mitogen activated protein kinase (MAPK) pathways play in counteracting environmental stress in photosynthetic organisms. To address this gap, we exposed Ulva compressa to chronic levels of copper (10 µM) specific inhibitors of Extracellular Signal Regulated Kinases (ERK), c-Jun N-terminal Kinases (JNK), and Cytokinin Specific Binding Protein (p38) MAPKs alone or in combination. Intracellular copper accumulation and photosynthetic activity (in vivo chlorophyll a fluorescence) were measured after 6 h, 24 h, 48 h, and 6 days of exposure. By day 6, when one (except JNK) or more of the MAPK pathways were inhibited under copper stress, there was a decrease in copper accumulation compared with algae exposed to copper alone. When at least two MAPKs were blocked, there was a decrease in photosynthetic activity expressed in lower productivity (ETRmax), efficiency (αETR), and saturation of irradiance (EkETR), accompanied by higher non-photochemical quenching (NPQmax), compared to both the control and copper-only treatments. In terms of accumulation, once the MAPK pathways were partially or completely blocked under copper, there was crosstalk between these and other signaling mechanisms to enhance metal extrusion/exclusion from cells. Crosstalk occurred among MAPK pathways to maintain photosynthesis homeostasis, demonstrating the importance of the signaling pathways for physiological performance. This study is complemented by a parallel/complementary article Rodríguez-Rojas et al. on the role of MAPKs in copper-detoxification.


Asunto(s)
Chlorophyta/fisiología , Cobre/metabolismo , Sistema de Señalización de MAP Quinasas , Biodegradación Ambiental , Chlorophyta/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...