Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Chempluschem ; 87(6): e202200116, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35608832

RESUMEN

The Philae lander of the Rosetta space mission made a non-nominal landing on comet 67P/Churyumov-Gerasimenko on November 12, 2014. Shortly after, using the limited power available from Philae's batteries, the COSAC instrument performed a single 18-minutes gas chromatogram, which has remained unpublished until now due to the lack of identifiable elution. This work shows that, despite the unsuccessful drilling of the comet and deposition of surface material in the SD2 ovens, the measurements from the COSAC instrument were executed nominally. We describe an automated search for extremely small deviations from noise and discuss the possibility of a signal from ethylene glycol at m/z 31. Arguments for and against this detection are listed, but the results remain inconclusive. Still, the successful operations of an analytical chemistry laboratory on a cometary nucleus gives great hope for the future of space exploration.

2.
Sensors (Basel) ; 21(14)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34300528

RESUMEN

This work studies ultrasonic propagation in liquid and ice water drops. The effect of porosity on attenuation of ultrasonic waves in the drops is also explored. The motivation of this research was the possible application of ultrasonic techniques to the study of interstellar and cometary ice analogs. These ice analogs, made by vapor deposition onto a cold substrate at 10 K, can display high porosity values up to 40%. We found that the ultrasonic pulse was fully attenuated in such ice, and decided to grow ice samples by freezing a liquid drop. Several experiments were performed using liquid or frozen water drops with and without pores. An ultrasonic pulse was transmitted through each drop and measured. This method served to estimate the ultrasonic velocity of each drop by measuring drop size and time-of-flight of ultrasonic transmission. Propagation of ultrasonic waves in these drops was also simulated numerically using the SimNDT program developed by the authors. After that, the ultrasonic velocity was related with the porosity using a micromechanical model. It was found that a low value of porosity in the ice is sufficient to attenuate the ultrasonic propagation. This explains the observed lack of transmission in porous astrophysical ice analogs.

3.
Proc Natl Acad Sci U S A ; 117(28): 16149-16153, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32606247

RESUMEN

The Atacama Large Millimeter Array has allowed a detailed observation of molecules in protoplanetary disks, which can evolve toward solar systems like our own. While CO, [Formula: see text], HCO, and [Formula: see text] are often abundant species in the cold zones of the disk, [Formula: see text] or [Formula: see text] are only found in a few regions, and more-complex organic molecules are not observed. We simulate, experimentally, ice processing in disks under realistic conditions, that is, layered ices irradiated by soft X-rays. X-ray emission from young solar-type stars is thousands of times brighter than that of today's sun. The ice mantle is composed of a [Formula: see text]:[Formula: see text]:[Formula: see text] mixture, covered by a layer made of [Formula: see text] and CO. The photoproducts found desorbing from both ice layers to the gas phase during the irradiation converge with those detected in higher abundances in the gas phase of protoplanetary disks, providing important insights on the nonthermal processes that drive the chemistry in these objects.

4.
Life (Basel) ; 9(3)2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31510002

RESUMEN

At present, the study of diverse habitable environments of astrobiological interest has become a major challenge. Due to the obvious technical and economical limitations on in situ exploration, laboratory simulations are one of the most feasible research options to make advances both in several astrobiologically interesting environments and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum and high pressure technology to the design of versatile simulation chambers devoted to the simulation of the interstellar medium, planetary atmospheres conditions and high-pressure environments. These simulation facilities are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Furthermore, the implementation of several spectroscopies, such as infrared, Raman, ultraviolet, etc., to study solids, and mass spectrometry to monitor the gas phase, in our simulation chambers, provide specific tools for the in situ physico-chemical characterization of analogues of astrobiological interest. Simulation chamber facilities are a promising and potential tool for planetary exploration of habitable environments. A review of many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these unique experimental systems.

5.
Astrophys J Lett ; 8512017 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-29862006

RESUMEN

We present the first detection of gas phase S2H in the Horsehead, a moderately UV-irradiated nebula. This confirms the presence of doubly sulfuretted species in the interstellar medium and opens a new challenge for sulfur chemistry. The observed S2H abundance is ~5×10-11, only a factor 4-6 lower than that of the widespread H2S molecule. H2S and S2H are efficiently formed on the UV-irradiated icy grain mantles. We performed ice irradiation experiments to determine the H2S and S2H photodesorption yields. The obtained values are ~1.2×10-3 and <1×10-5 molecules per incident photon for H2S and S2H, respectively. Our upper limit to the S2H photodesorption yield suggests that photo-desorption is not a competitive mechanism to release the S2H molecules to the gas phase. Other desorption mechanisms such as chemical desorption, cosmic-ray desorption and grain shattering can increase the gaseous S2H abundance to some extent. Alternatively, S2H can be formed via gas phase reactions involving gaseous H2S and the abundant ions S+ and SH+. The detection of S2H in this nebula could be therefore the result of the coexistence of an active grain surface chemistry and gaseous photo-chemistry.

6.
Science ; 349(6247): aab0689, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26228156

RESUMEN

Comets harbor the most pristine material in our solar system in the form of ice, dust, silicates, and refractory organic material with some interstellar heritage. The evolved gas analyzer Cometary Sampling and Composition (COSAC) experiment aboard Rosetta's Philae lander was designed for in situ analysis of organic molecules on comet 67P/Churyumov-Gerasimenko. Twenty-five minutes after Philae's initial comet touchdown, the COSAC mass spectrometer took a spectrum in sniffing mode, which displayed a suite of 16 organic compounds, including many nitrogen-bearing species but no sulfur-bearing species, and four compounds­methyl isocyanate, acetone, propionaldehyde, and acetamide­that had not previously been reported in comets.

7.
Proc Natl Acad Sci U S A ; 110(32): 12899-904, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23858474

RESUMEN

Carbon dioxide (CO2) is one of the most relevant and abundant species in astrophysical and atmospheric media. In particular, CO2 ice is present in several solar system bodies, as well as in interstellar and circumstellar ice mantles. The amount of CO2 in ice mantles and the presence of pure CO2 ice are significant indicators of the temperature history of dust in protostars. It is therefore important to know if CO2 is mixed with other molecules in the ice matrix or segregated and whether it is present in an amorphous or crystalline form. We apply a multidisciplinary approach involving IR spectroscopy in the laboratory, theoretical modeling of solid structures, and comparison with astronomical observations. We generate an unprecedented highly amorphous CO2 ice and study its crystallization both by thermal annealing and by slow accumulation of monolayers from the gas phase under an ultrahigh vacuum. Structural changes are followed by IR spectroscopy. We also devise theoretical models to reproduce different CO2 ice structures. We detect a preferential in-plane orientation of some vibrational modes of crystalline CO2. We identify the IR features of amorphous CO2 ice, and, in particular, we provide a theoretical explanation for a band at 2,328 cm(-1) that dominates the spectrum of the amorphous phase and disappears when the crystallization is complete. Our results allow us to rule out the presence of pure and amorphous CO2 ice in space based on the observations available so far, supporting our current view of the evolution of CO2 ice.


Asunto(s)
Dióxido de Carbono/química , Hielo Seco , Medio Ambiente Extraterrestre/química , Algoritmos , Cristalización , Modelos Químicos , Modelos Moleculares , Espectrofotometría Infrarroja , Temperatura
8.
Chem Soc Rev ; 42(5): 2173-85, 2013 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-23340705

RESUMEN

A compendium of different solid carbonaceous materials detected in space is presented, focussing on the search for organic matter of prebiotic interest. This journey takes us from the carbon grains likely formed in the atmospheres of evolved stars to organic grain mantles made from ice processing thought to be present in dense interstellar clouds and circumstellar regions, making a stop in solar system objects that could have delivered organic species to the early Earth. The most abundant carbon materials detected to date in space appear to be of little biological relevance. On the other hand, organic refractory residues, made in the laboratory from UV-photoprocessing followed by warm-up of interstellar ice analogs, are a hydrocarbon material rich in O and N containing chemical compounds that could act as initiators of prebiotic chemistry. A similar material might be present in dust grains inside dense clouds or circumstellar regions, some comets, and as a minor component in carbonaceous chondrites. We use infrared spectroscopy as a tool to spot organic refractory matter in various space environments. The delivery of organic materials via comets, (micro-) meteorites, and interplanetary dust particles to the primitive Earth might have contributed as a starting material for prebiotic chemistry. To test this hypothesis, it is first essential to characterize the composition of exogenous organic matter.


Asunto(s)
Prebióticos , Planeta Tierra , Meteoroides , Compuestos Orgánicos/química , Procesos Fotoquímicos , Sistema Solar
9.
Chem Biodivers ; 5(12): 2729-39, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19089832

RESUMEN

The recent evidences of presence of subsurface oceans of liquid water and ice on Saturn's moons, and the possible presence and astrobiological importance of polycyclic aromatic hydrocarbons (PAHs) in these environments, provide strong motivation for the exploration of the prebiotic chemistry in ice and to test if PAHs could be experimentally synthesized in ice surfaces under atmospheres containing methane as carbon source. In this work, we present a new design for prebiotic-chemistry experiments in ice matrix. Using this design, a mixture of products including PAHs, polar aromatic compounds, and hydrophilic acetylene-based polymers was obtained. We propose that acetylene generation in a methane/nitrogen atmosphere and subsequent polymerization to PAHs and polyynes could be a favored pathway in the presence of water freeze-melt cycles. These results shed light on the processes involved in PAH synthesis in icy environments and on the physical factors that drive the different competing pathways in methane/nitrogen atmospheres.


Asunto(s)
Acetileno/química , Hielo , Hidrocarburos Policíclicos Aromáticos/síntesis química , Polímeros/síntesis química , Cromatografía de Gases y Espectrometría de Masas , Hidrocarburos Policíclicos Aromáticos/química , Polímeros/química , Microextracción en Fase Sólida , Propiedades de Superficie
10.
Chemistry ; 11(17): 4895-900, 2005 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-15900538

RESUMEN

Biological cofactors include functionalized derivatives of cyclic tetrapyrrole structures that incorporate different metal ions. They build up structural partnerships with proteins, which play a crucial role in biochemical reactions. Porphyrin, chlorin, bacteriochlorin, and corrin are the basic structures of cofactors (heme, chlorophyll, bacteriochlorophyll, siroheme, F 430, and vitamin B12). Laboratory and theoretical work suggest that the molecular building blocks of proteins (alpha-amino acids) and nucleic acids (carbohydrates, purines, and pyrimidines) were generated under prebiotic conditions. On the other hand, experimental data on the prebiotic chemistry of cofactors are rare. We propose to search directly for the pathways of the formation of cofactors in the laboratory. Herein we report on the detection of N-heterocycles and amines in the room-temperature residue obtained after photo- and thermal processing of an interstellar ice analogue under high vacuum at 12 K. Among them, hexahydro-1,3,5-triazine and its derivatives, together with monopyrrolic molecules, are precursors of porphinoid cofactors. Hexahydropyrimidine was also detected. This is the first detection of these compounds in experiments simulating circumstellar/interstellar conditions. Except for 2-aminopyrrole and 2,4-diaminofuran, which were only found in 13C-labeled experiments, all the reported species were detected in both 12C- and 13C-labeled experiments, excluding contamination. The molecules reported here might be present in circumstellar/interstellar grains and cometary dust and could be detected by the Stardust and Rosetta missions.


Asunto(s)
Hielo , Rayos Ultravioleta , Cromatografía de Gases
11.
Proc Natl Acad Sci U S A ; 101(25): 9182-6, 2004 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-15194825

RESUMEN

Amino acids identified in the Murchison chondritic meteorite by molecular and isotopic analysis are thought to have been delivered to the early Earth by asteroids, comets, and interplanetary dust particles where they may have triggered the appearance of life by assisting in the synthesis of proteins via prebiotic polycondensation reactions [Oró, J. (1961) Nature 190, 389-390; Chyba, C. F. & Sagan, C. (1992) Nature 355, 125-132]. We report the identification of diamino acids in the Murchison meteorite by new enantioselective GC-MS analyses. dl-2,3-diaminopropanoic acid, dl-2,4-diaminobutanoic acid, 4,4'-diaminoisopentanoic acid, 3,3'-diaminoisobutanoic acid, and 2,3-diaminobutanoic acid were detected in the parts per billion range after chemical transformation into N,N-diethoxycarbonyl ethyl ester derivatives. The chiral diamino acids show a racemic ratio. Laboratory data indicate that diamino acids support the formation of polypeptide structures under primitive Earth conditions [Brack, A. & Orgel, L. E. (1975) Nature 256, 383-387] and suggest polycondensation reactions of diamino acids into early peptide nucleic acid material as one feasible pathway for the prebiotic evolution of DNA and RNA genomes [Joyce, G. F. (2002) Nature 418, 214-221]. The results obtained in this study favor the assumption that not only amino acids (as the required monomers of proteins) form in interstellar/circumstellar environments, but also the family of diamino monocarboxylic acids, which might have been relevant in prebiotic chemistry.


Asunto(s)
Aminoácidos Diaminos/análisis , Diaminas/análisis , Meteoroides , Cromatografía de Gases/métodos , Pirroles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...