Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Struct Biol ; 214(4): 107915, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36341955

RESUMEN

Single-Particle Analysis by Cryo-Electron Microscopy is a well-established technique to elucidate the three-dimensional (3D) structure of biological macromolecules. The orientation of the acquired projection images must be initially estimated without any reference to the final structure. In this step, algorithms may find a mirrored version of all the orientations resulting in a mirrored 3D map. It is as compatible with the acquired images as its unmirrored version from the image processing point of view, only that it is not biologically plausible. In this article, we introduce HaPi (Handedness Pipeline), the first method to automatically determine the hand of electron density maps of macromolecules solved by CryoEM. HaPi is built by training two 3D convolutional neural networks. The first determines α-helices in a map, and the second determines whether the α-helix is left-handed or right-handed. A consensus strategy defines the overall map hand. The pipeline is trained on simulated and experimental data. The handedness can be detected only for maps whose resolution is better than 5 Å. HaPi can identify the hand in 89% of new simulated maps correctly. Moreover, we evaluated all the maps deposited at the Electron Microscopy Data Bank and 11 structures uploaded with the incorrect hand were identified.


Asunto(s)
Microscopía por Crioelectrón
2.
Faraday Discuss ; 240(0): 210-227, 2022 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-35861059

RESUMEN

The number of maps deposited in public databases (Electron Microscopy Data Bank, EMDB) determined by cryo-electron microscopy has quickly grown in recent years. With this rapid growth, it is critical to guarantee their quality. So far, map validation has primarily focused on the agreement between maps and models. From the image processing perspective, the validation has been mostly restricted to using two half-maps and the measurement of their internal consistency. In this article, we suggest that map validation can be taken much further from the point of view of image processing if 2D classes, particles, angles, coordinates, defoci, and micrographs are also provided. We present a progressive validation scheme that qualifies a result validation status from 0 to 5 and offers three optional qualifiers (A, W, and O) that can be added. The simplest validation state is 0, while the most complete would be 5AWO. This scheme has been implemented in a website https://biocomp.cnb.csic.es/EMValidationService/ to which reconstructed maps and their ESI can be uploaded.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Microscopía por Crioelectrón/métodos , Microscopía Electrónica
3.
Mol Imaging Biol ; 21(1): 19-24, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-29845428

RESUMEN

PURPOSE: Computed tomography (CT) images enable capturing specific manifestations of tuberculosis (TB) that are undetectable using common diagnostic tests, which suffer from limited specificity. In this study, we aimed to automatically quantify the burden of Mycobacterium tuberculosis (Mtb) using biomarkers extracted from x-ray CT images. PROCEDURES: Nine macaques were aerosol-infected with Mtb and treated with various antibiotic cocktails. Chest CT scans were acquired in all animals at specific times independently of disease progression. First, a fully automatic segmentation of the healthy lungs from the acquired chest CT volumes was performed and air-like structures were extracted. Next, unsegmented pulmonary regions corresponding to damaged parenchymal tissue and TB lesions were included. CT biomarkers were extracted by classification of the probability distribution of the intensity of the segmented images into three tissue types: (1) Healthy tissue, parenchyma free from infection; (2) soft diseased tissue, and (3) hard diseased tissue. The probability distribution of tissue intensities was assumed to follow a Gaussian mixture model. The thresholds identifying each region were automatically computed using an expectation-maximization algorithm. RESULTS: The estimated longitudinal course of TB infection shows that subjects that have followed the same antibiotic treatment present a similar response (relative change in the diseased volume) with respect to baseline. More interestingly, the correlation between the diseased volume (soft tissue + hard tissue), which was manually delineated by an expert, and the automatically extracted volume with the proposed method was very strong (R2 ≈ 0.8). CONCLUSIONS: We present a methodology that is suitable for automatic extraction of a radiological biomarker from CT images for TB disease burden. The method could be used to describe the longitudinal evolution of Mtb infection in a clinical trial devoted to the design of new drugs.


Asunto(s)
Carga Bacteriana/métodos , Biomarcadores/análisis , Tomografía Computarizada por Rayos X/métodos , Tuberculosis Pulmonar/diagnóstico , Algoritmos , Animales , Progresión de la Enfermedad , Imagenología Tridimensional , Estudios Longitudinales , Pulmón/diagnóstico por imagen , Pulmón/microbiología , Pulmón/patología , Macaca fascicularis , Masculino , Mycobacterium tuberculosis/citología , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad , Tuberculosis Pulmonar/microbiología
4.
Comput Methods Biomech Biomed Engin ; 18(13): 1377-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-24697293

RESUMEN

Traction force microscopy (TFM) is commonly used to estimate cells' traction forces from the deformation that they cause on their substrate. The accuracy of TFM highly depends on the computational methods used to measure the deformation of the substrate and estimate the forces, and also on the specifics of the experimental set-up. Computer simulations can be used to evaluate the effect of both the computational methods and the experimental set-up without the need to perform numerous experiments. Here, we present one such TFM simulator that addresses several limitations of the existing ones. As a proof of principle, we recreate a TFM experimental set-up, and apply a classic 2D TFM algorithm to recover the forces. In summary, our simulator provides a valuable tool to study the performance, refine experimentally, and guide the extraction of biological conclusions from TFM experiments.


Asunto(s)
Adhesión Celular , Simulación por Computador , Microscopía de Fuerza Atómica/métodos , Algoritmos , Elasticidad , Análisis de Fourier , Hidrogeles , Fenómenos Mecánicos , Óptica y Fotónica , Programas Informáticos , Estrés Mecánico
5.
J Biomech ; 46(1): 50-5, 2013 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-23141954

RESUMEN

The exchange of physical forces in both cell-cell and cell-matrix interactions play a significant role in a variety of physiological and pathological processes, such as cell migration, cancer metastasis, inflammation and wound healing. Therefore, great interest exists in accurately quantifying the forces that cells exert on their substrate during migration. Traction Force Microscopy (TFM) is the most widely used method for measuring cell traction forces. Several mathematical techniques have been developed to estimate forces from TFM experiments. However, certain simplifications are commonly assumed, such as linear elasticity of the materials and/or free geometries, which in some cases may lead to inaccurate results. Here, cellular forces are numerically estimated by solving a minimization problem that combines multiple non-linear FEM solutions. Our simulations, free from constraints on the geometrical and the mechanical conditions, show that forces are predicted with higher accuracy than when using the standard approaches.


Asunto(s)
Movimiento Celular/fisiología , Modelos Biológicos , Línea Celular Tumoral , Colágeno , Simulación por Computador , Elasticidad , Análisis de Elementos Finitos , Humanos , Hidrogel de Polietilenoglicol-Dimetacrilato , Microscopía/métodos , Sefarosa
6.
Phys Med Biol ; 55(20): 6215-42, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20885021

RESUMEN

We present a novel algorithm for the registration of 2D image sequences that combines the principles of multiresolution B-spline-based elastic registration and those of bidirectional consistent registration. In our method, consecutive triples of images are iteratively registered to gradually extend the information through the set of images of the entire sequence. The intermediate results are reused for the registration of the following triple. We choose to interpolate the images and model the deformation fields using B-spline multiresolution pyramids. Novel boundary conditions are introduced to better characterize the deformations at the boundaries. In the experimental section, we quantitatively show that our method recovers from barrel/pincushion and fish-eye deformations with subpixel error. Moreover, it is more robust against outliers--occasional strong noise and large rotations--than the state-of-the-art methods. Finally, we show that our method can be used to realign series of histological serial sections, which are often heavily distorted due to folding and tearing of the tissues.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Algoritmos , Animales , Encéfalo/citología , Encéfalo/metabolismo , Drosophila melanogaster , Humanos , Macaca fascicularis , Glándulas Mamarias Humanas/citología , Glándulas Mamarias Humanas/metabolismo , Microscopía Electrónica de Transmisión , Reproducibilidad de los Resultados , Factores de Tiempo
7.
Phys Med Biol ; 54(22): 7009-24, 2009 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-19887716

RESUMEN

Animal models of lung disease are gaining importance in understanding the underlying mechanisms of diseases such as emphysema and lung cancer. Micro-CT allows in vivo imaging of these models, thus permitting the study of the progression of the disease or the effect of therapeutic drugs in longitudinal studies. Automated analysis of micro-CT images can be helpful to understand the physiology of diseased lungs, especially when combined with measurements of respiratory system input impedance. In this work, we present a fast and robust murine airway segmentation and reconstruction algorithm. The algorithm is based on a propagating fast marching wavefront that, as it grows, divides the tree into segments. We devised a number of specific rules to guarantee that the front propagates only inside the airways and to avoid leaking into the parenchyma. The algorithm was tested on normal mice, a mouse model of chronic inflammation and a mouse model of emphysema. A comparison with manual segmentations of two independent observers shows that the specificity and sensitivity values of our method are comparable to the inter-observer variability, and radius measurements of the mainstem bronchi reveal significant differences between healthy and diseased mice. Combining measurements of the automatically segmented airways with the parameters of the constant phase model provides extra information on how disease affects lung function.


Asunto(s)
Modelos Animales de Enfermedad , Imagenología Tridimensional/veterinaria , Enfermedades Pulmonares/diagnóstico por imagen , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Tomografía Computarizada por Rayos X/métodos , Tomografía Computarizada por Rayos X/veterinaria , Algoritmos , Animales , Inteligencia Artificial , Humanos , Imagenología Tridimensional/métodos , Masculino , Ratones , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
8.
J Microsc ; 235(1): 50-8, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19566626

RESUMEN

Reliable autofocusing is a critical part of any automated microscopy system: by precisely positioning the sample in the focal plane, the acquired images are sharp and can be accurately segmented and quantified. The three main components of an autofocus algorithm are a contrast function, an optimization algorithm and a sampling strategy. The latter has not been given much attention in the literature. It is however a very important part of the autofocusing algorithm, especially in high content and high throughput image-based screening. It deals with the problem of sampling the focus surface as sparsely as possible to reduce bleaching and computation time while with sufficient detail as to permit a faithful interpolation. We propose a new strategy that has higher performance compared to the classical square grid or the hexagonal lattice, which is based on the concept of low discrepancy point sets and in particular on the Halton point set. We tested the new algorithm on nine different focus surfaces, each under 24 different combinations of Signal-to-Noise ratio (SNR) and sampling rate, obtaining that in 88% of the tested conditions, Halton sampling outperforms its counterparts.

9.
Artículo en Inglés | MEDLINE | ID: mdl-18003449

RESUMEN

Multi-color Fluorescent in-Situ Hybridization (M-FISH) selectively stains multiple DNA sequences using fluorescently labeled DNA probes. Proper interpretation of M-FISH images is often hampered by spectral overlap between the detected emissions of the fluorochromes. When using more than two or three fluorochromes, the appropriate combination of wide-band excitation and emission filters reduces cross-talk, but cannot completely eliminate it. A number of approaches -both hardware and software-have been proposed in the last decade to facilitate the interpretation of M-FISH images. The most used and efficient approaches use linear unmixing methods that algorithmically compute and correct for the fluorochrome contributions to each detection channel. In contrast to standard methods that require prior knowledge of the fluorochrome spectra, we present a new method, Non-Negative Matrix Factorization (NMF), that blindly estimates the spectral contributions and corrects for the overlap. Our experimental results show that its performance in terms of residual cross-talk and spot counting reliability outperforms the non-blind state-of-the-art method, the Non-Negative Least Squares (NNLS) algorithm.


Asunto(s)
Algoritmos , Inteligencia Artificial , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Hibridación Fluorescente in Situ/métodos , Microscopía Fluorescente/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...