Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
JOR Spine ; 6(4): e1294, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38156054

RESUMEN

The cartilaginous endplates (CEP) are key components of the intervertebral disc (IVD) necessary for sustaining the nutrition of the disc while distributing mechanical loads and preventing the disc from bulging into the adjacent vertebral body. The size, shape, and composition of the CEP are essential in maintaining its function, and degeneration of the CEP is considered a contributor to early IVD degeneration. In addition, the CEP is implicated in Modic changes, which are often associated with low back pain. This review aims to tackle the current knowledge of the CEP regarding its structure, composition, permeability, and mechanical role in a healthy disc, how they change with degeneration, and how they connect to IVD degeneration and low back pain. Additionally, the authors suggest a standardized naming convention regarding the CEP and bony endplate and suggest avoiding the term vertebral endplate. Currently, there is limited data on the CEP itself as reported data is often a combination of CEP and bony endplate, or the CEP is considered as articular cartilage. However, it is clear the CEP is a unique tissue type that differs from articular cartilage, bony endplate, and other IVD tissues. Thus, future research should investigate the CEP separately to fully understand its role in healthy and degenerated IVDs. Further, most IVD regeneration therapies in development failed to address, or even considered the CEP, despite its key role in nutrition and mechanical stability within the IVD. Thus, the CEP should be considered and potentially targeted for future sustainable treatments.

2.
Front Cell Dev Biol ; 10: 924692, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35846355

RESUMEN

Low back pain is a highly prevalent, chronic, and costly medical condition predominantly triggered by intervertebral disc degeneration (IDD). IDD is often caused by structural and biochemical changes in intervertebral discs (IVD) that prompt a pathologic shift from an anabolic to catabolic state, affecting extracellular matrix (ECM) production, enzyme generation, cytokine and chemokine production, neurotrophic and angiogenic factor production. The IVD is an immune-privileged organ. However, during degeneration immune cells and inflammatory factors can infiltrate through defects in the cartilage endplate and annulus fibrosus fissures, further accelerating the catabolic environment. Remarkably, though, catabolic ECM disruption also occurs in the absence of immune cell infiltration, largely due to native disc cell production of catabolic enzymes and cytokines. An unbalanced metabolism could be induced by many different factors, including a harsh microenvironment, biomechanical cues, genetics, and infection. The complex, multifactorial nature of IDD brings the challenge of identifying key factors which initiate the degenerative cascade, eventually leading to back pain. These factors are often investigated through methods including animal models, 3D cell culture, bioreactors, and computational models. However, the crosstalk between the IVD, immune system, and shifted metabolism is frequently misconstrued, often with the assumption that the presence of cytokines and chemokines is synonymous to inflammation or an immune response, which is not true for the intact disc. Therefore, this review will tackle immunomodulatory and IVD cell roles in IDD, clarifying the differences between cellular involvements and implications for therapeutic development and assessing models used to explore inflammatory or catabolic IVD environments.

3.
Sci Rep ; 12(1): 710, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-35027596

RESUMEN

Mollusks have developed a broad diversity of shelled structures to protect against challenges imposed by biological interactions(e.g., predation) and constraints (e.g., [Formula: see text]-induced ocean acidification and wave-forces). Although the study of shell biomechanical properties with nacreous microstructure has provided understanding about the role of shell integrity and functionality on mollusk performance and survival, there are no studies, to our knowledge, that delve into the variability of these properties during the mollusk ontogeny, between both shells of bivalves or across the shell length. In this study, using as a model the intertidal mussel Perumytilus purpuratus to obtain, for the first time, the mechanical properties of its shells with nacreous microstructure; we perform uniaxial compression tests oriented in three orthogonal axes corresponding to the orthotropic directions of the shell material behavior (thickness, longitudinal, and transversal). Thus, we evaluated whether the shell material's stress and strain strength and elastic modulus showed differences in mechanical behavior in mussels of different sizes, between valves, and across the shell length. Our results showed that the biomechanical properties of the material building the P. purpuratus shells are symmetrical in both valves and homogeneous across the shell length. However, uniaxial compression tests performed across the shell thickness showed that biomechanical performance depends on the shell size (aging); and that mechanical properties such as the elastic modulus, maximum stress, and strain become degraded during ontogeny. SEM observations evidenced that compression induced a tortuous fracture with a delamination effect on the aragonite mineralogical structure of the shell. Findings suggest that P. purpuratus may become vulnerable to durophagous predators and wave forces in older stages, with implications in mussel beds ecology and biodiversity of intertidal habitats.


Asunto(s)
Exoesqueleto/fisiología , Fenómenos Biomecánicos/fisiología , Moluscos/fisiología , Exoesqueleto/anatomía & histología , Exoesqueleto/ultraestructura , Animales , Fuerza Compresiva , Ecosistema , Elasticidad
4.
Front Bioeng Biotechnol ; 9: 813537, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35127676

RESUMEN

Increased carbon dioxide levels (CO2) in the atmosphere triggered a cascade of physical and chemical changes in the ocean surface. Marine organisms producing carbonate shells are regarded as vulnerable to these physical (warming), and chemical (acidification) changes occurring in the oceans. In the last decade, the aquaculture production of the bivalve scallop Argopecten purpuratus (AP) showed declined trends along the Chilean coast. These negative trends have been ascribed to ecophysiological and biomineralization constraints in shell carbonate production. This work experimentally characterizes the biomechanical response of AP scallop shells subjected to climate change scenarios (acidification and warming) via quasi-static tensile and bending tests. The experimental results indicate the adaptation of mechanical properties to hostile growth scenarios in terms of temperature and water acidification. In addition, the mechanical response of the AP subjected to control climate conditions was analyzed with finite element simulations including an anisotropic elastic constitutive model for a two-fold purpose: Firstly, to calibrate the material model parameters using the tensile test curves in two mutually perpendicular directions (representative of the mechanical behavior of the material). Secondly, to validate this characterization procedure in predicting the material's behavior in two mechanical tests.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...