Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Sleep Med ; 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39167421

RESUMEN

STUDY OBJECTIVES: Cannabidiol (CBD) is increasingly used as a health supplement, though few clinical studies have demonstrated benefits. The primary objective of this study was to evaluate the effects of an oral CBD-terpene formulation on sleep physiology in individuals with insomnia. METHODS: In this double-blind, placebo-controlled, randomized clinical trial, 125 individuals with insomnia received an oral administration of CBD (300 mg) and terpenes (1 mg each of linalool, myrcene, phytol, limonene, α-terpinene, α-terpineol, α-pinene, and ß-caryophyllene) for ≥ 4 days/week over 4 weeks using a crossover design. The study medication was devoid of Δ9-tetrahydrocannabinol (Δ9-THC). The primary outcome measure was the percentage of time participants spent in the combination of slow wave sleep (SWS) and rapid eye movement (REM) sleep stages, as measured by a wrist-worn sleep-tracking device. RESULTS: This CBD-terpene regimen marginally increased the mean nightly percentage of time participants spent in SWS + REM sleep compared to the placebo [mean (SEM), 1.3% (0.60%), 95% C.I. 0.1 to 2.5%, P = 0.03]. More robust increases were observed in participants with low baseline SWS + REM sleep, as well as in day sleepers. For select participants, the increase in SWS + REM sleep averaged as much as 48 minutes/night over a four-week treatment period. This treatment had no effect on total sleep time (TST), resting heart rate or heart rate variability, and no adverse events were reported. CONCLUSIONS: Select CBD-terpene ratios may increase SWS + REM sleep in some individuals with insomnia, and may have the potential to provide a safe and efficacious alternative to over-the-counter (OTC) sleep aids and commonly prescribed sleep medications. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov NCT05233761.

2.
J Huntingtons Dis ; 6(1): 79-91, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28339398

RESUMEN

BACKGROUND: A hallmark of Huntington's disease is the progressive aggregation of full length and N-terminal fragments of polyglutamine (polyQ)-expanded Huntingtin (Htt) into intracellular inclusions. The production of N-terminal fragments appears important for enabling pathology and aggregation; and hence the direct expression of a variety of N-terminal fragments are commonly used to model HD in animal and cellular models. OBJECTIVE: It remains unclear how the length of the N-terminal fragments relates to polyQ - mediated aggregation. We investigated the fundamental intracellular aggregation process of eight different-length N-terminal fragments of Htt in both short (25Q) and long polyQ (97Q). METHODS: N-terminal fragments were fused to fluorescent proteins and transiently expressed in mammalian cell culture models. These included the classic exon 1 fragment (90 amino acids) and longer forms of 105, 117, 171, 513, 536, 552, and 586 amino acids based on wild-type Htt (of 23Q) sequence length nomenclature. RESULTS: N-terminal fragments of less than 171 amino acids only formed inclusions in polyQ-expanded form. By contrast the longer fragments formed inclusions irrespective of Q-length, with Q-length playing a negligible role in extent of aggregation. The inclusions could be classified into 3 distinct morphological categories. One type (Type A) was universally associated with polyQ expansions whereas the other two types (Types B and C) formed independently of polyQ length expansion. CONCLUSIONS: PolyQ-expansion was only required for fragments of less than 171 amino acids to aggregate. Longer fragments aggregated predominately through a non-polyQ mechanism, involving at least one, and probably more distinct clustering mechanisms.


Asunto(s)
Expansión de las Repeticiones de ADN , Proteína Huntingtina/metabolismo , Péptidos , Agregación Patológica de Proteínas/metabolismo , Animales , Western Blotting , Células COS , Línea Celular Tumoral , Chlorocebus aethiops , Citometría de Flujo , Técnica del Anticuerpo Fluorescente , Vectores Genéticos , Células HEK293 , Humanos , Proteína Huntingtina/genética , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Ratones , Microscopía Confocal , Péptidos/genética , Péptidos/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/patología , Transfección , Proteína Fluorescente Roja
3.
Biol Psychiatry ; 82(10): 756-765, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28187857

RESUMEN

BACKGROUND: Kynurenine 3-monooxygenase converts kynurenine to 3-hydroxykynurenine, and its inhibition shunts the kynurenine pathway-which is implicated as dysfunctional in various psychiatric disorders-toward enhanced synthesis of kynurenic acid, an antagonist of both α7 nicotinic acetylcholine and N-methyl-D-aspartate receptors. Possibly as a result of reduced kynurenine 3-monooxygenase activity, elevated central nervous system levels of kynurenic acid have been found in patients with psychotic disorders, including schizophrenia. METHODS: In the present study, we investigated adaptive-and possibly regulatory-changes in mice with a targeted deletion of Kmo (Kmo-/-) and characterized the kynurenine 3-monooxygenase-deficient mice using six behavioral assays relevant for the study of schizophrenia. RESULTS: Genome-wide differential gene expression analyses in the cerebral cortex and cerebellum of these mice identified a network of schizophrenia- and psychosis-related genes, with more pronounced alterations in cerebellar tissue. Kynurenic acid levels were also increased in these brain regions in Kmo-/- mice, with significantly higher levels in the cerebellum than in the cerebrum. Kmo-/- mice exhibited impairments in contextual memory and spent less time than did controls interacting with an unfamiliar mouse in a social interaction paradigm. The mutant animals displayed increased anxiety-like behavior in the elevated plus maze and in a light/dark box. After a D-amphetamine challenge (5 mg/kg, intraperitoneal), Kmo-/- mice showed potentiated horizontal activity in the open field paradigm. CONCLUSIONS: Taken together, these results demonstrate that the elimination of Kmo in mice is associated with multiple gene and functional alterations that appear to duplicate aspects of the psychopathology of several neuropsychiatric disorders.


Asunto(s)
Quinurenina 3-Monooxigenasa/deficiencia , Quinurenina 3-Monooxigenasa/fisiología , Trastornos Psicóticos/genética , Trastornos Psicóticos/psicología , Esquizofrenia/genética , Psicología del Esquizofrénico , Animales , Cerebelo/metabolismo , Corteza Cerebral/metabolismo , Dextroanfetamina/farmacología , Ácido Quinurénico/metabolismo , Quinurenina 3-Monooxigenasa/genética , Ratones , Ratones Noqueados , Actividad Motora/efectos de los fármacos
4.
Biochim Biophys Acta ; 1860(11 Pt A): 2345-2354, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27392942

RESUMEN

BACKGROUND: In mammals, the majority of the essential amino acid tryptophan is degraded via the kynurenine pathway (KP). Several KP metabolites play distinct physiological roles, often linked to immune system functions, and may also be causally involved in human diseases including neurodegenerative disorders, schizophrenia and cancer. Pharmacological manipulation of the KP has therefore become an active area of drug development. To target the pathway effectively, it is important to understand how specific KP enzymes control levels of the bioactive metabolites in vivo. METHODS: Here, we conducted a comprehensive biochemical characterization of mice with a targeted deletion of either tryptophan 2,3-dioxygenase (TDO) or indoleamine 2,3-dioxygenase (IDO), the two initial rate-limiting enzymes of the KP. These enzymes catalyze the same reaction, but differ in biochemical characteristics and expression patterns. We measured KP metabolite levels and enzyme activities and expression in several tissues in basal and immune-stimulated conditions. RESULTS AND CONCLUSIONS: Although our study revealed several unexpected downstream effects on KP metabolism in both knockout mice, the results were essentially consistent with TDO-mediated control of basal KP metabolism and a role of IDO in phenomena involving stimulation of the immune system.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Triptófano Oxigenasa/metabolismo , Animales , Encéfalo/metabolismo , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Inflamación/etiología , Inflamación/metabolismo , Quinurenina/sangre , Lipopolisacáridos/toxicidad , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Especificidad de Órganos , Triptófano Oxigenasa/genética
5.
J Biol Chem ; 288(51): 36554-66, 2013 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-24189070

RESUMEN

Kynurenine 3-monooxygenase (KMO), a pivotal enzyme in the kynurenine pathway (KP) of tryptophan degradation, has been suggested to play a major role in physiological and pathological events involving bioactive KP metabolites. To explore this role in greater detail, we generated mice with a targeted genetic disruption of Kmo and present here the first biochemical and neurochemical characterization of these mutant animals. Kmo(-/-) mice lacked KMO activity but showed no obvious abnormalities in the activity of four additional KP enzymes tested. As expected, Kmo(-/-) mice showed substantial reductions in the levels of its enzymatic product, 3-hydroxykynurenine, in liver, brain, and plasma. Compared with wild-type animals, the levels of the downstream metabolite quinolinic acid were also greatly decreased in liver and plasma of the mutant mice but surprisingly were only slightly reduced (by ∼20%) in the brain. The levels of three other KP metabolites: kynurenine, kynurenic acid, and anthranilic acid, were substantially, but differentially, elevated in the liver, brain, and plasma of Kmo(-/-) mice, whereas the liver and brain content of the major end product of the enzymatic cascade, NAD(+), did not differ between Kmo(-/-) and wild-type animals. When assessed by in vivo microdialysis, extracellular kynurenic acid levels were found to be significantly elevated in the brains of Kmo(-/-) mice. Taken together, these results provide further evidence that KMO plays a key regulatory role in the KP and indicate that Kmo(-/-) mice will be useful for studying tissue-specific functions of individual KP metabolites in health and disease.


Asunto(s)
Encéfalo/metabolismo , Eliminación de Gen , Técnicas de Inactivación de Genes , Quinurenina 3-Monooxigenasa/genética , Quinurenina/metabolismo , Animales , Quinurenina/análogos & derivados , Quinurenina/sangre , Quinurenina 3-Monooxigenasa/metabolismo , Hígado/metabolismo , Ratones , Ratones Noqueados , Especificidad de Órganos , Triptófano/metabolismo
6.
J Neurosci ; 32(50): 18259-68, 2012 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-23238740

RESUMEN

Peripheral immune cells and brain microglia exhibit an activated phenotype in premanifest Huntington's disease (HD) patients that persists chronically and correlates with clinical measures of neurodegeneration. However, whether activation of the immune system contributes to neurodegeneration in HD, or is a consequence thereof, remains unclear. Signaling through cannabinoid receptor 2 (CB(2)) dampens immune activation. Here, we show that the genetic deletion of CB(2) receptors in a slowly progressing HD mouse model accelerates the onset of motor deficits and increases their severity. Treatment of mice with a CB(2) receptor agonist extends life span and suppresses motor deficits, synapse loss, and CNS inflammation, while a peripherally restricted CB(2) receptor antagonist blocks these effects. CB(2) receptors regulate blood interleukin-6 (IL-6) levels, and IL-6 neutralizing antibodies partially rescue motor deficits and weight loss in HD mice. These findings support a causal link between CB(2) receptor signaling in peripheral immune cells and the onset and severity of neurodegeneration in HD, and they provide a novel therapeutic approach to treat HD.


Asunto(s)
Enfermedad de Huntington/inmunología , Enfermedad de Huntington/metabolismo , Leucocitos/metabolismo , Receptor Cannabinoide CB2/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Enfermedad de Huntington/patología , Interleucina-6/inmunología , Interleucina-6/metabolismo , Leucocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptor Cannabinoide CB2/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
7.
J Clin Invest ; 122(12): 4737-47, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23160193

RESUMEN

In Huntington disease (HD), immune cells are activated before symptoms arise; however, it is unclear how the expression of mutant huntingtin (htt) compromises the normal functions of immune cells. Here we report that primary microglia from early postnatal HD mice were profoundly impaired in their migration to chemotactic stimuli, and expression of a mutant htt fragment in microglial cell lines was sufficient to reproduce these deficits. Microglia expressing mutant htt had a retarded response to a laser-induced brain injury in vivo. Leukocyte recruitment was defective upon induction of peritonitis in HD mice at early disease stages and was normalized upon genetic deletion of mutant htt in immune cells. Migration was also strongly impaired in peripheral immune cells from pre-manifest human HD patients. Defective actin remodeling in immune cells expressing mutant htt likely contributed to their migration deficit. Our results suggest that these functional changes may contribute to immune dysfunction and neurodegeneration in HD, and may have implications for other polyglutamine expansion diseases in which mutant proteins are ubiquitously expressed.


Asunto(s)
Quimiotaxis , Enfermedad de Huntington/genética , Microglía/fisiología , Células Mieloides/fisiología , Proteínas del Tejido Nervioso/genética , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Adenosina Trifosfato/fisiología , Animales , Extensiones de la Superficie Celular/metabolismo , Células Cultivadas , Complemento C5a/fisiología , Humanos , Proteína Huntingtina , Enfermedad de Huntington/inmunología , Enfermedad de Huntington/patología , Macrófagos/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microglía/citología , Monocitos/fisiología , Mutación , Células Mieloides/citología , Proteínas del Tejido Nervioso/metabolismo , Peritoneo/patología , Tioglicolatos/farmacología , Imagen de Lapso de Tiempo
8.
J Huntingtons Dis ; 1(1): 107-18, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23097680

RESUMEN

Several genes and proteins of the complement cascade are present at elevated levels in brains of patients with Huntington's disease (HD). The complement cascade is well characterized as an effector arm of the immune system, and in the brain it is important for developmental synapse elimination. We hypothesized that increased levels of complement in HD brains contributes to disease progression, perhaps by contributing to synapse elimination or inflammatory signaling. We tested this hypothesis in the R6/2 mouse model of HD by crossing mice deficient in complement component 3 (C3), a crucial complement protein found at increased levels in HD brains, to R6/2 mice and monitoring behavioral and neuropathological disease progression. We found no alterations in multiple behavioral assays, weight or survival in R6/2 mice lacking C3. We also quantified the expression of several complement cascade genes in R6/2 brains and found that the large scale upregulation of complement genes observed in HD brains is not mirrored in R6/2 brains. These data show that C3 deficiency does not alter disease progression in the R6/2 mouse model of HD.


Asunto(s)
Complemento C3/genética , Complemento C3/metabolismo , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Animales , Conducta Animal , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Expresión Génica/genética , Humanos , Masculino , Ratones , Ratones Transgénicos
9.
J Neurosci ; 32(32): 11109-19, 2012 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-22875942

RESUMEN

Huntington's disease (HD) is a devastating neurodegenerative disorder with no disease-modifying treatments available. The disease is caused by expansion of a CAG trinucleotide repeat and manifests with progressive motor abnormalities, psychiatric symptoms, and cognitive decline. Expression of an expanded polyglutamine repeat within the Huntingtin (Htt) protein impacts numerous cellular processes, including protein folding and clearance. A hallmark of the disease is the progressive formation of inclusions that represent the culmination of a complex aggregation process. Methylene blue (MB), has been shown to modulate aggregation of amyloidogenic disease proteins. We investigated whether MB could impact mutant Htt-mediated aggregation and neurotoxicity. MB inhibited recombinant protein aggregation in vitro, even when added to preformed oligomers and fibrils. MB also decreased oligomer number and size and decreased accumulation of insoluble mutant Htt in cells. In functional assays, MB increased survival of primary cortical neurons transduced with mutant Htt, reduced neurodegeneration and aggregation in a Drosophila melanogaster model of HD, and reduced disease phenotypes in R6/2 HD modeled mice. Furthermore, MB treatment also promoted an increase in levels of BDNF RNA and protein in vivo. Thus, MB, which is well tolerated and used in humans, has therapeutic potential for HD.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico , Enfermedad de Huntington/tratamiento farmacológico , Azul de Metileno/farmacología , Azul de Metileno/uso terapéutico , Proteínas del Tejido Nervioso/metabolismo , Análisis de Varianza , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Modelos Animales de Enfermedad , Drosophila , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/toxicidad , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Ácido Quinurénico/toxicidad , Ratones , Ratones Endogámicos C57BL , Microscopía de Fuerza Atómica , Mutación/genética , Proteínas del Tejido Nervioso/genética , Enfermedades Neurodegenerativas/etiología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/prevención & control , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Desempeño Psicomotor , Ratas , Prueba de Desempeño de Rotación con Aceleración Constante , Transfección , Expansión de Repetición de Trinucleótido/genética
10.
Nat Rev Neurosci ; 13(7): 465-77, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22678511

RESUMEN

The essential amino acid tryptophan is not only a precursor of serotonin but is also degraded to several other neuroactive compounds, including kynurenic acid, 3-hydroxykynurenine and quinolinic acid. The synthesis of these metabolites is regulated by an enzymatic cascade, known as the kynurenine pathway, that is tightly controlled by the immune system. Dysregulation of this pathway, resulting in hyper-or hypofunction of active metabolites, is associated with neurodegenerative and other neurological disorders, as well as with psychiatric diseases such as depression and schizophrenia. With recently developed pharmacological agents, it is now possible to restore metabolic equilibrium and envisage novel therapeutic interventions.


Asunto(s)
Encéfalo/patología , Encéfalo/fisiología , Quinurenina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Enfermedades del Sistema Nervioso/patología , Transducción de Señal/fisiología , Animales , Humanos
11.
Fly (Austin) ; 6(2): 117-20, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22634544

RESUMEN

Huntington disease (HD) is a fatal inherited neurodegenerative disorder caused by a polyglutamine expansion in the huntingtin protein (htt). A pathological hallmark of the disease is the loss of a specific population of striatal neurons, and considerable attention has been paid to the role of the kynurenine pathway (KP) of tryptophan (TRP) degradation in this process. The KP contains three neuroactive metabolites: 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and kynurenic acid (KYNA). 3-HK and QUIN are neurotoxic, and are increased in the brains of early stage HD patients, as well as in yeast and mouse models of HD. Conversely, KYNA is neuroprotective and has been shown to be decreased in HD patient brains. We recently used a Drosophila model of HD to measure the neuroprotective effect of genetic and pharmacological inhibition of kynurenine monoxygenase (KMO)-the enzyme catalyzing the formation of 3-HK at a pivotal branch point in the KP. We found that KMO inhibition in Drosophila robustly attenuated neurodegeneration, and that this neuroprotection was correlated with reduced levels of 3-HK relative to KYNA. Importantly, we showed that KP metabolites are causative in this process, as 3-HK and KYNA feeding experiments modulated neurodegeneration. We also found that genetic inhibition of the upstream KP enzyme tryptophan-2,3-dioxygenase (TDO) was neuroprotective in flies. Here, we extend these results by reporting that genetic impairment of KMO or TDO is protective against the eclosion defect in HD model fruit flies. Our results provide further support for the possibility of therapeutic KP interventions in HD.


Asunto(s)
Drosophila melanogaster/genética , Enfermedad de Huntington/metabolismo , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Color del Ojo/genética , Proteínas del Ojo/genética , Femenino , Técnicas de Silenciamiento del Gen , Enfermedad de Huntington/terapia , Ácido Quinurénico/metabolismo , Quinurenina/análogos & derivados , Quinurenina/metabolismo , Quinurenina 3-Monooxigenasa/genética , Masculino , Triptófano Oxigenasa/genética
12.
J Biol Chem ; 287(19): 16017-28, 2012 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-22433867

RESUMEN

Huntington disease is a genetic neurodegenerative disorder that arises from an expanded polyglutamine region in the N terminus of the HD gene product, huntingtin. Protein inclusions comprised of N-terminal fragments of mutant huntingtin are a characteristic feature of disease, though are likely to play a protective role rather than a causative one in neurodegeneration. Soluble oligomeric assemblies of huntingtin formed early in the aggregation process are candidate toxic species in HD. In the present study, we established an in vitro system to generate recombinant huntingtin in mammalian cells. Using both denaturing and native gel analysis, we have identified novel oligomeric forms of mammalian-derived expanded huntingtin exon-1 N-terminal fragment. These species are transient and were not previously detected using bacterially expressed exon-1 protein. Importantly, these species are recognized by 3B5H10, an antibody that recognizes a two-stranded hairpin conformation of expanded polyglutamine believed to be associated with a toxic form of huntingtin. Interestingly, comparable oligomeric species were not observed for expanded huntingtin shortstop, a 117-amino acid fragment of huntingtin shown previously in mammalian cell lines and transgenic mice, and here in primary cortical neurons, to be non-toxic. Further, we demonstrate that expanded huntingtin shortstop has a reduced ability to form amyloid-like fibrils characteristic of the aggregation pathway for toxic expanded polyglutamine proteins. Taken together, these data provide a possible candidate toxic species in HD. In addition, these studies demonstrate the fundamental differences in early aggregation events between mutant huntingtin exon-1 and shortstop proteins that may underlie the differences in toxicity.


Asunto(s)
Exones/genética , Proteínas del Tejido Nervioso/genética , Expansión de Repetición de Trinucleótido/genética , Animales , Western Blotting , Células Cultivadas , Electroforesis en Gel de Poliacrilamida , Glutatión Transferasa/genética , Glutatión Transferasa/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Enfermedad de Huntington/metabolismo , Ratones , Microscopía de Fuerza Atómica , Microscopía Confocal , Microscopía Electrónica de Transmisión , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/metabolismo , Péptidos/genética , Conformación Proteica , Multimerización de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Tiempo
13.
Hum Mol Genet ; 21(11): 2432-49, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22357655

RESUMEN

The aggregation of α-synuclein (αSyn) is a neuropathologic hallmark of Parkinson's disease and other synucleinopathies. In Lewy bodies, αSyn is extensively phosphorylated, predominantly at serine 129 (S129). Recent studies in yeast have shown that, at toxic levels, αSyn disrupts Rab homeostasis, causing an initial endoplasmic reticulum-to-Golgi block that precedes a generalized trafficking collapse. However, whether αSyn phosphorylation modulates trafficking defects has not been evaluated. Here, we show that constitutive expression of αSyn in yeast impairs late-exocytic, early-endocytic and/or recycling trafficking. Although members of the casein kinase I (CKI) family phosphorylate αSyn at S129, they attenuate αSyn toxicity and trafficking defects by an S129 phosphorylation-independent mechanism. Surprisingly, phosphorylation of S129 modulates αSyn toxicity and trafficking defects in a manner strictly determined by genetic background. Abnormal endosome morphology, increased levels of the endosome marker Rab5 and co-localization of mammalian CKI with αSyn aggregates are observed in brain sections from αSyn-overexpressing mice and human synucleinopathies. Our results contribute to evidence that suggests αSyn-induced defects in endocytosis, exocytosis and/or recycling of vesicles involved in these cellular processes might contribute to the pathogenesis of synucleinopathies.


Asunto(s)
Levaduras/metabolismo , alfa-Sinucleína/genética , Animales , Quinasa de la Caseína I/genética , Quinasa de la Caseína I/metabolismo , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas/metabolismo , Fosforilación , Transporte de Proteínas , alfa-Sinucleína/metabolismo
14.
J Neurosci ; 32(1): 133-42, 2012 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-22219276

RESUMEN

Huntington's disease (HD) is caused by an expanded polyglutamine tract in the protein huntingtin (htt). Although HD has historically been viewed as a brain-specific disease, htt is expressed ubiquitously, and recent studies indicate that mutant htt might cause changes to the immune system that could contribute to pathogenesis. Monocytes from HD patients and mouse models are hyperactive in response to stimulation, and increased levels of inflammatory cytokines and chemokines are found in pre-manifest patients that correlate with pathogenesis. In this study, wild-type (WT) bone marrow cells were transplanted into two lethally irradiated transgenic mouse models of HD that ubiquitously express full-length htt (YAC128 and BACHD mice). Bone marrow transplantation partially attenuated hypokinetic and motor deficits in HD mice. Increased levels of synapses in the cortex were found in HD mice that received bone marrow transplants. Importantly, serum levels of interleukin-6, interleukin-10, CXC chemokine ligand 1, and interferon-γ were significantly higher in HD than WT mice but were normalized in mice that received a bone marrow transplant. These results suggest that immune cell dysfunction might be an important modifier of pathogenesis in HD.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso/terapia , Células de la Médula Ósea/inmunología , Trasplante de Médula Ósea/métodos , Enfermedad de Huntington/inmunología , Enfermedad de Huntington/terapia , Terapia de Inmunosupresión/métodos , Animales , Enfermedades Autoinmunes del Sistema Nervioso/fisiopatología , Modelos Animales de Enfermedad , Femenino , Humanos , Enfermedad de Huntington/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
15.
J Huntingtons Dis ; 1(1): 119-32, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-24086178

RESUMEN

The Huntington's disease (HD) mutation leads to a complex process of Huntingtin (Htt) aggregation into multimeric species that eventually form visible inclusions in cytoplasm, nuclei and neuronal processes. One hypothesis is that smaller, soluble forms of amyloid proteins confer toxic effects and contribute to early cell dysfunction. However, analysis of mutant Htt aggregation intermediates to identify conformers that may represent toxic forms of the protein and represent potential drug targets remains difficult. We performed a detailed analysis of aggregation conformers in multiple in vitro, cell and ex vivo models of HD. Conformation-specific antibodies were used to identify and characterize aggregation species, allowing assessment of multiple conformers present during the aggregation process. Using a series of assays together with these antibodies, several forms could be identified. Fibrillar oligomers, defined as having a ß-sheet rich conformation, are observed in vitro using recombinant protein and in protein extracts from cells in culture or mouse brain and shown to be globular, soluble and non-sedimentable structures. Compounds previously described to modulate visible inclusion body formation and reduce toxicity in HD models were also tested and consistently found to alter the formation of fibrillar oligomers. Interestingly, these compounds did not alter the rate of visible inclusion formation, indicating that fibrillar oligomers are not necessarily the rate limiting step of inclusion body formation. Taken together, we provide insights into the structure and formation of mutant Htt fibrillar oligomers that are modulated by small molecules with protective potential in HD models.


Asunto(s)
Amiloide/química , Amiloide/genética , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Animales , Química Encefálica , Línea Celular Tumoral , Humanos , Proteína Huntingtina , Ratones , Ratones Transgénicos , Modelos Biológicos , Mutación/genética
16.
Nat Chem Biol ; 7(12): 925-34, 2011 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-22037470

RESUMEN

Polyglutamine (polyQ) stretches exceeding a threshold length confer a toxic function to proteins that contain them and cause at least nine neurological disorders. The basis for this toxicity threshold is unclear. Although polyQ expansions render proteins prone to aggregate into inclusion bodies, this may be a neuronal coping response to more toxic forms of polyQ. The exact structure of these more toxic forms is unknown. Here we show that the monoclonal antibody 3B5H10 recognizes a species of polyQ protein in situ that strongly predicts neuronal death. The epitope selectively appears among some of the many low-molecular-weight conformational states assumed by expanded polyQ and disappears in higher-molecular-weight aggregated forms, such as inclusion bodies. These results suggest that protein monomers and possibly small oligomers containing expanded polyQ stretches can adopt a conformation that is recognized by 3B5H10 and is toxic or closely related to a toxic species.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Neuronas/efectos de los fármacos , Neuronas/patología , Péptidos/química , Péptidos/toxicidad , Anticuerpos Monoclonales/inmunología , Especificidad de Anticuerpos , Muerte Celular/efectos de los fármacos , Células Cultivadas , Epítopos/química , Epítopos/inmunología , Epítopos/toxicidad , Células HEK293 , Humanos , Cuerpos de Inclusión/química , Peso Molecular , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Péptidos/inmunología , Relación Estructura-Actividad , Expansión de Repetición de Trinucleótido
17.
Chem Biol ; 18(9): 1113-25, 2011 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-21944750

RESUMEN

Polyglutamine(polyQ)-expanded proteins are potential therapeutic targets for the treatment of polyQ expansion disorders such as Huntington's disease (HD) and spinocerebellar ataxia type 3 (SCA3). Here, we used an amino-terminal fragment of a mutant Huntingtin protein (Htt-N-82Q) as bait in an unbiased screen of a 60,000 peptoid library. Peptoid HQP09 was selected from the isolated hits and confirmed as a specific ligand of Htt-N-82Q and Atxn3-77Q mutant proteins in biochemical experiments. We identified three critical residues in the HQP09 sequence that are important for its activity and generated a minimal derivative, HQP09_9, which maintains the specific polyQ-binding activity. We demonstrated that HQP09 and HQP09_9 inhibited aggregation of Htt-N-53Q in vitro and exerted Ca(2+)-stabilizing and neuroprotective effects in experiments with primary striatal neuronal cultures derived from HD mice. We further demonstrated that intracerebroventricular delivery of HQP09 to an HD mouse model resulted in reduced accumulation of mutant Huntingtin aggregates and improved motor behavioral outcomes. These results suggest that HQP09 and similar peptoids hold promise as novel therapeutics for developing treatments for HD, SCA3, and other polyglutamine expansion disorders.


Asunto(s)
Enfermedad de Huntington/tratamiento farmacológico , Fármacos Neuroprotectores/química , Péptidos/metabolismo , Peptoides/química , Peptoides/uso terapéutico , Animales , Células Cultivadas , Proteína Huntingtina , Enfermedad de Machado-Joseph/tratamiento farmacológico , Ratones , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Péptidos/química , Peptoides/farmacología , Unión Proteica
18.
Cell ; 145(6): 863-74, 2011 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-21640374

RESUMEN

Metabolites in the kynurenine pathway, generated by tryptophan degradation, are thought to play an important role in neurodegenerative disorders, including Alzheimer's and Huntington's diseases. In these disorders, glutamate receptor-mediated excitotoxicity and free radical formation have been correlated with decreased levels of the neuroprotective metabolite kynurenic acid. Here, we describe the synthesis and characterization of JM6, a small-molecule prodrug inhibitor of kynurenine 3-monooxygenase (KMO). Chronic oral administration of JM6 inhibits KMO in the blood, increasing kynurenic acid levels and reducing extracellular glutamate in the brain. In a transgenic mouse model of Alzheimer's disease, JM6 prevents spatial memory deficits, anxiety-related behavior, and synaptic loss. JM6 also extends life span, prevents synaptic loss, and decreases microglial activation in a mouse model of Huntington's disease. These findings support a critical link between tryptophan metabolism in the blood and neurodegeneration, and they provide a foundation for treatment of neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Huntington/tratamiento farmacológico , Ácido Quinurénico/análisis , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Sulfonamidas/uso terapéutico , Tiazoles/uso terapéutico , Administración Oral , Enfermedad de Alzheimer/fisiopatología , Animales , Química Encefálica , Modelos Animales de Enfermedad , Femenino , Humanos , Ácido Quinurénico/sangre , Masculino , Ratones , Ratones Transgénicos , Sulfonamidas/administración & dosificación , Tiazoles/administración & dosificación
19.
Curr Biol ; 21(11): 961-6, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21636279

RESUMEN

Neuroactive metabolites of the kynurenine pathway (KP) of tryptophan degradation have been implicated in the pathophysiology of neurodegenerative disorders, including Huntington's disease (HD) [1]. A central hallmark of HD is neurodegeneration caused by a polyglutamine expansion in the huntingtin (htt) protein [2]. Here we exploit a transgenic Drosophila melanogaster model of HD to interrogate the therapeutic potential of KP manipulation. We observe that genetic and pharmacological inhibition of kynurenine 3-monooxygenase (KMO) increases levels of the neuroprotective metabolite kynurenic acid (KYNA) relative to the neurotoxic metabolite 3-hydroxykynurenine (3-HK) and ameliorates neurodegeneration. We also find that genetic inhibition of tryptophan 2,3-dioxygenase (TDO), the first and rate-limiting step in the pathway, leads to a similar neuroprotective shift toward KYNA synthesis. Importantly, we demonstrate that the feeding of KYNA and 3-HK to HD model flies directly modulates neurodegeneration, underscoring the causative nature of these metabolites. This study provides the first genetic evidence that inhibition of KMO and TDO activity protects against neurodegenerative disease in an animal model, indicating that strategies targeted at two key points within the KP may have therapeutic relevance in HD, and possibly other neurodegenerative disorders.


Asunto(s)
Drosophila melanogaster/metabolismo , Enfermedad de Huntington/patología , Quinurenina/metabolismo , Degeneración Nerviosa/metabolismo , Animales , Animales Modificados Genéticamente/metabolismo , Modelos Animales de Enfermedad , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Ácido Quinurénico/química , Ácido Quinurénico/metabolismo , Ácido Quinurénico/uso terapéutico , Quinurenina/análogos & derivados , Quinurenina/química , Quinurenina 3-Monooxigenasa/antagonistas & inhibidores , Quinurenina 3-Monooxigenasa/química , Degeneración Nerviosa/tratamiento farmacológico , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/metabolismo , Triptófano/química , Triptófano/metabolismo , Triptófano Oxigenasa/antagonistas & inhibidores , Triptófano Oxigenasa/química , Triptófano Oxigenasa/genética
20.
J Biol Chem ; 286(1): 410-9, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21044956

RESUMEN

Huntington disease (HD) is a neurodegenerative disorder caused by the expansion of a polyglutamine tract in the huntingtin (htt) protein. To uncover candidate therapeutic targets and networks involved in pathogenesis, we integrated gene expression profiling and functional genetic screening to identify genes critical for mutant htt toxicity in yeast. Using mRNA profiling, we have identified genes differentially expressed in wild-type yeast in response to mutant htt toxicity as well as in three toxicity suppressor strains: bna4Δ, mbf1Δ, and ume1Δ. BNA4 encodes the yeast homolog of kynurenine 3-monooxygenase, a promising drug target for HD. Intriguingly, despite playing diverse cellular roles, these three suppressors share common differentially expressed genes involved in stress response, translation elongation, and mitochondrial transport. We then systematically tested the ability of the differentially expressed genes to suppress mutant htt toxicity when overexpressed and have thereby identified 12 novel suppressors, including genes that play a role in stress response, Golgi to endosome transport, and rRNA processing. Integrating the mRNA profiling data and the genetic screening data, we have generated a robust network that shows enrichment in genes involved in rRNA processing and ribosome biogenesis. Strikingly, these observations implicate dysfunction of translation in the pathology of HD. Recent work has shown that regulation of translation is critical for life span extension in Drosophila and that manipulation of this process is protective in Parkinson disease models. In total, these observations suggest that pharmacological manipulation of translation may have therapeutic value in HD.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Proteínas Fúngicas/genética , Perfilación de la Expresión Génica , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Proteínas Nucleares/metabolismo , Proteínas Nucleares/toxicidad , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Secuencia de Bases , Eliminación de Gen , Genómica , Humanos , Proteína Huntingtina , Enfermedad de Huntington/genética , Proteínas Mutantes/biosíntesis , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/toxicidad , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/biosíntesis , Proteínas Nucleares/genética , Análisis de Secuencia por Matrices de Oligonucleótidos , Sistemas de Lectura Abierta/genética , ARN Ribosómico/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Ribosomas/metabolismo , Saccharomyces cerevisiae/citología , Transgenes/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA