Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Genet ; 15: 39, 2014 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-24666668

RESUMEN

BACKGROUND: Meat from Bos taurus and Bos indicus breeds are an important source of nutrients for humans and intramuscular fat (IMF) influences its flavor, nutritional value and impacts human health. Human consumption of fat that contains high levels of monounsaturated fatty acids (MUFA) can reduce the concentration of undesirable cholesterol (LDL) in circulating blood. Different feeding practices and genetic variation within and between breeds influences the amount of IMF and fatty acid (FA) composition in meat. However, it is difficult and costly to determine fatty acid composition, which has precluded beef cattle breeding programs from selecting for a healthier fatty acid profile. In this study, we employed a high-density single nucleotide polymorphism (SNP) chip to genotype 386 Nellore steers, a Bos indicus breed and, a Bayesian approach to identify genomic regions and putative candidate genes that could be involved with deposition and composition of IMF. RESULTS: Twenty-three genomic regions (1-Mb SNP windows) associated with IMF deposition and FA composition that each explain ≥1% of the genetic variance were identified on chromosomes 2, 3, 6, 7, 8, 9, 10, 11, 12, 17, 26 and 27. Many of these regions were not previously detected in other breeds. The genes present in these regions were identified and some can help explain the genetic basis of deposition and composition of fat in cattle. CONCLUSIONS: The genomic regions and genes identified contribute to a better understanding of the genetic control of fatty acid deposition and can lead to DNA-based selection strategies to improve meat quality for human consumption.


Asunto(s)
Adiposidad , Bovinos/genética , Músculo Esquelético/química , Animales , Teorema de Bayes , Cruzamiento , Ácidos Grasos/química , Estudios de Asociación Genética , Masculino , Carne , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
2.
Comput Biol Med ; 37(2): 159-65, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16650400

RESUMEN

We investigated the hypothesis that essential amino acids are being replaced in proteins by non-essential amino acids. We compared the amino acid composition in human, worm and fly proteomes, organisms that cannot synthesize all amino acids, with the amino acids of the proteomes of plant, bakers yeast and budding yeast, which are capable of synthesizing them. The analysis covered 460,737 proteins (212,197,907 amino acids). The data suggest a bias towards the usage of non-essential amino acids (mostly the set GAPQC) by metazoan organisms, except for the worm, a Pseudocoelomata. Our results support the hypothesis that non-essential amino acids have been substituting essential ones in the Coelomata.


Asunto(s)
Aminoácidos/química , Dípteros/química , Proteínas Fúngicas/química , Proteínas de Plantas/química , Proteoma , Animales , Análisis por Conglomerados , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA