Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Genome Res ; 34(4): 530-538, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38719470

RESUMEN

The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, within both annotated protein-coding and noncoding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term ribosome decision graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the latter "translons." Nondeterministic events, such as initiation, reinitiation, selenocysteine insertion, or ribosomal frameshifting, are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions and for analyzing genetic variation and quantitative genome-wide data on translation for characterization of regulatory modulators of translation.


Asunto(s)
Biosíntesis de Proteínas , ARN Mensajero , Ribosomas , Ribosomas/metabolismo , Ribosomas/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Humanos , Sistemas de Lectura Abierta , Eucariontes/genética
2.
bioRxiv ; 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38659920

RESUMEN

Significant efforts have been made to characterize the biophysical properties of proteins. Small proteins have received less attention because their annotation has historically been less reliable. However, recent improvements in sequencing, proteomics, and bioinformatics techniques have led to the high-confidence annotation of small open reading frames (smORFs) that encode for functional proteins, producing smORF-encoded proteins (SEPs). SEPs have been found to perform critical functions in several species, including humans. While significant efforts have been made to annotate SEPs, less attention has been given to the biophysical properties of these proteins. We characterized the distributions of predicted and curated biophysical properties, including sequence composition, structure, localization, function, and disease association of a conservative list of previously identified human SEPs. We found significant differences between SEPs and both larger proteins and control sets. Additionally, we provide an example of how our characterization of biophysical properties can contribute to distinguishing protein-coding smORFs from non-coding ones in otherwise ambiguous cases.

4.
bioRxiv ; 2023 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-37986835

RESUMEN

The application of ribosome profiling has revealed an unexpected abundance of translation in addition to that responsible for the synthesis of previously annotated protein-coding regions. Multiple short sequences have been found to be translated within single RNA molecules, both within annotated protein-coding and non-coding regions. The biological significance of this translation is a matter of intensive investigation. However, current schematic or annotation-based representations of mRNA translation generally do not account for the apparent multitude of translated regions within the same molecules. They also do not take into account the stochasticity of the process that allows alternative translations of the same RNA molecules by different ribosomes. There is a need for formal representations of mRNA complexity that would enable the analysis of quantitative information on translation and more accurate models for predicting the phenotypic effects of genetic variants affecting translation. To address this, we developed a conceptually novel abstraction that we term Ribosome Decision Graphs (RDGs). RDGs represent translation as multiple ribosome paths through untranslated and translated mRNA segments. We termed the later 'translons'. Non-deterministic events, such as initiation, re-initiation, selenocysteine insertion or ribosomal frameshifting are then represented as branching points. This representation allows for an adequate representation of eukaryotic translation complexity and focuses on locations critical for translation regulation. We show how RDGs can be used for depicting translated regions, analysis of genetic variation and quantitative genome-wide data on translation for characterisation of regulatory modulators of translation.

5.
Mol Cell Proteomics ; 22(9): 100631, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37572790

RESUMEN

Ribosome profiling (Ribo-Seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of noncanonical sites of ribosome translation outside the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7000 noncanonical ORFs are translated, which, at first glance, has the potential to expand the number of human protein CDSs by 30%, from ∼19,500 annotated CDSs to over 26,000 annotated CDSs. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of noncanonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome but searching for guidance on how to proceed. Here, we discuss the current state of noncanonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein coding."


Asunto(s)
Biosíntesis de Proteínas , Proteoma , Humanos , Proteoma/metabolismo , Proteómica/métodos , Perfilado de Ribosomas , Ribosomas/metabolismo , Sistemas de Lectura Abierta
6.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292611

RESUMEN

Ribosome profiling (Ribo-seq) has proven transformative for our understanding of the human genome and proteome by illuminating thousands of non-canonical sites of ribosome translation outside of the currently annotated coding sequences (CDSs). A conservative estimate suggests that at least 7,000 non-canonical open reading frames (ORFs) are translated, which, at first glance, has the potential to expand the number of human protein-coding sequences by 30%, from ∼19,500 annotated CDSs to over 26,000. Yet, additional scrutiny of these ORFs has raised numerous questions about what fraction of them truly produce a protein product and what fraction of those can be understood as proteins according to conventional understanding of the term. Adding further complication is the fact that published estimates of non-canonical ORFs vary widely by around 30-fold, from several thousand to several hundred thousand. The summation of this research has left the genomics and proteomics communities both excited by the prospect of new coding regions in the human genome, but searching for guidance on how to proceed. Here, we discuss the current state of non-canonical ORF research, databases, and interpretation, focusing on how to assess whether a given ORF can be said to be "protein-coding". In brief: The human genome encodes thousands of non-canonical open reading frames (ORFs) in addition to protein-coding genes. As a nascent field, many questions remain regarding non-canonical ORFs. How many exist? Do they encode proteins? What level of evidence is needed for their verification? Central to these debates has been the advent of ribosome profiling (Ribo-seq) as a method to discern genome-wide ribosome occupancy, and immunopeptidomics as a method to detect peptides that are processed and presented by MHC molecules and not observed in traditional proteomics experiments. This article provides a synthesis of the current state of non-canonical ORF research and proposes standards for their future investigation and reporting. Highlights: Combined use of Ribo-seq and proteomics-based methods enables optimal confidence in detecting non-canonical ORFs and their protein products.Ribo-seq can provide more sensitive detection of non-canonical ORFs, but data quality and analytical pipelines will impact results.Non-canonical ORF catalogs are diverse and span both high-stringency and low-stringency ORF nominations.A framework for standardized non-canonical ORF evidence will advance the research field.

7.
Mol Cell ; 83(6): 994-1011.e18, 2023 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-36806354

RESUMEN

All species continuously evolve short open reading frames (sORFs) that can be templated for protein synthesis and may provide raw materials for evolutionary adaptation. We analyzed the evolutionary origins of 7,264 recently cataloged human sORFs and found that most were evolutionarily young and had emerged de novo. We additionally identified 221 previously missed sORFs potentially translated into peptides of up to 15 amino acids-all of which are smaller than the smallest human microprotein annotated to date. To investigate the bioactivity of sORF-encoded small peptides and young microproteins, we subjected 266 candidates to a mass-spectrometry-based interactome screen with motif resolution. Based on these interactomes and additional cellular assays, we can associate several candidates with mRNA splicing, translational regulation, and endocytosis. Our work provides insights into the evolutionary origins and interaction potential of young and small proteins, thereby helping to elucidate this underexplored territory of the human proteome.


Asunto(s)
Péptidos , Biosíntesis de Proteínas , Humanos , Sistemas de Lectura Abierta , Péptidos/genética , Proteómica , Micropéptidos
8.
Hum Mol Genet ; 32(10): 1753-1763, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-36715146

RESUMEN

Pathogenic variations in the sodium voltage-gated channel alpha subunit 1 (SCN1A) gene are responsible for multiple epilepsy phenotypes, including Dravet syndrome, febrile seizures (FS) and genetic epilepsy with FS plus. Phenotypic heterogeneity is a hallmark of SCN1A-related epilepsies, the causes of which are yet to be clarified. Genetic variation in the non-coding regulatory regions of SCN1A could be one potential causal factor. However, a comprehensive understanding of the SCN1A regulatory landscape is currently lacking. Here, we summarized the current state of knowledge of SCN1A regulation, providing details on its promoter and enhancer regions. We then integrated currently available data on SCN1A promoters by extracting information related to the SCN1A locus from genome-wide repositories and clearly defined the promoter and enhancer regions of SCN1A. Further, we explored the cellular specificity of differential SCN1A promoter usage. We also reviewed and integrated the available human brain-derived enhancer databases and mouse-derived data to provide a comprehensive computationally developed summary of SCN1A brain-active enhancers. By querying genome-wide data repositories, extracting SCN1A-specific data and integrating the different types of independent evidence, we created a comprehensive catalogue that better defines the regulatory landscape of SCN1A, which could be used to explore the role of SCN1A regulatory regions in disease.


Asunto(s)
Epilepsias Mioclónicas , Epilepsia , Convulsiones Febriles , Humanos , Ratones , Animales , Canal de Sodio Activado por Voltaje NAV1.1/genética , Epilepsias Mioclónicas/genética , Epilepsia/genética , Regiones Promotoras Genéticas , Fenotipo , Convulsiones Febriles/genética , Mutación
9.
Nucleic Acids Res ; 51(D1): D942-D949, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36420896

RESUMEN

GENCODE produces high quality gene and transcript annotation for the human and mouse genomes. All GENCODE annotation is supported by experimental data and serves as a reference for genome biology and clinical genomics. The GENCODE consortium generates targeted experimental data, develops bioinformatic tools and carries out analyses that, along with externally produced data and methods, support the identification and annotation of transcript structures and the determination of their function. Here, we present an update on the annotation of human and mouse genes, including developments in the tools, data, analyses and major collaborations which underpin this progress. For example, we report the creation of a set of non-canonical ORFs identified in GENCODE transcripts, the LRGASP collaboration to assess the use of long transcriptomic data to build transcript models, the progress in collaborations with RefSeq and UniProt to increase convergence in the annotation of human and mouse protein-coding genes, the propagation of GENCODE across the human pan-genome and the development of new tools to support annotation of regulatory features by GENCODE. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Asunto(s)
Biología Computacional , Genoma Humano , Humanos , Animales , Ratones , Anotación de Secuencia Molecular , Biología Computacional/métodos , Genoma Humano/genética , Transcriptoma/genética , Perfilación de la Expresión Génica , Bases de Datos Genéticas
10.
Nat Commun ; 13(1): 7910, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564405

RESUMEN

The synthesis of most proteins begins at AUG codons, yet a small number of non-AUG initiated proteoforms are also known. Here we analyse a large number of publicly available Ribo-seq datasets to identify novel, previously uncharacterised non-AUG proteoforms using Trips-Viz implementation of a novel algorithm for detecting translated ORFs. In parallel we analyse genomic alignment of 120 mammals to identify evidence of protein coding evolution in sequences encoding potential extensions. Unexpectedly we find that the number of non-AUG proteoforms identified with ribosome profiling data greatly exceeds those with strong phylogenetic support suggesting their recent evolution. Our study argues that the protein coding potential of human genome greatly exceeds that detectable through comparative genomics and exposes the existence of multiple proteins encoded by the same genomic loci.


Asunto(s)
Genómica , Ribosomas , Animales , Humanos , Ribosomas/metabolismo , Filogenia , Codón/genética , Codón/metabolismo , Proteínas/metabolismo , Biosíntesis de Proteínas , Sistemas de Lectura Abierta/genética , Mamíferos/genética , Mamíferos/metabolismo
12.
Acta Neuropathol ; 144(1): 107-127, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35551471

RESUMEN

Mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures is associated with common variation at rs7587026, located in the promoter region of SCN1A. We sought to explore possible underlying mechanisms. SCN1A expression was analysed in hippocampal biopsy specimens of individuals with mesial temporal lobe epilepsy with hippocampal sclerosis who underwent surgical treatment, and hippocampal neuronal cell loss was quantitatively assessed using immunohistochemistry. In healthy individuals, hippocampal volume was measured using MRI. Analyses were performed stratified by rs7587026 type. To study the functional consequences of increased SCN1A expression, we generated, using transposon-mediated bacterial artificial chromosome transgenesis, a zebrafish line expressing exogenous scn1a, and performed EEG analysis on larval optic tecta at 4 day post-fertilization. Finally, we used an in vitro promoter analysis to study whether the genetic motif containing rs7587026 influences promoter activity. Hippocampal SCN1A expression differed by rs7587026 genotype (Kruskal-Wallis test P = 0.004). Individuals homozygous for the minor allele showed significantly increased expression compared to those homozygous for the major allele (Dunn's test P = 0.003), and to heterozygotes (Dunn's test P = 0.035). No statistically significant differences in hippocampal neuronal cell loss were observed between the three genotypes. Among 597 healthy participants, individuals homozygous for the minor allele at rs7587026 displayed significantly reduced mean hippocampal volume compared to major allele homozygotes (Cohen's D = - 0.28, P = 0.02), and to heterozygotes (Cohen's D = - 0.36, P = 0.009). Compared to wild type, scn1lab-overexpressing zebrafish larvae exhibited more frequent spontaneous seizures [one-way ANOVA F(4,54) = 6.95 (P < 0.001)]. The number of EEG discharges correlated with the level of scn1lab overexpression [one-way ANOVA F(4,15) = 10.75 (P < 0.001]. Finally, we showed that a 50 bp promoter motif containing rs7587026 exerts a strong regulatory role on SCN1A expression, though we could not directly link this to rs7587026 itself. Our results develop the mechanistic link between rs7587026 and mesial temporal lobe epilepsy with hippocampal sclerosis and a history of febrile seizures. Furthermore, we propose that quantitative precision may be important when increasing SCN1A expression in current strategies aiming to treat seizures in conditions involving SCN1A haploinsufficiency, such as Dravet syndrome.


Asunto(s)
Epilepsia del Lóbulo Temporal , Epilepsia , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Convulsiones Febriles , Proteínas de Pez Cebra/metabolismo , Animales , Epilepsia/genética , Epilepsia del Lóbulo Temporal/genética , Genómica , Gliosis/patología , Hipocampo/patología , Humanos , Canal de Sodio Activado por Voltaje NAV1.1/genética , Esclerosis/patología , Convulsiones Febriles/complicaciones , Convulsiones Febriles/genética , Pez Cebra
13.
Nature ; 604(7905): 310-315, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35388217

RESUMEN

Comprehensive genome annotation is essential to understand the impact of clinically relevant variants. However, the absence of a standard for clinical reporting and browser display complicates the process of consistent interpretation and reporting. To address these challenges, Ensembl/GENCODE1 and RefSeq2 launched a joint initiative, the Matched Annotation from NCBI and EMBL-EBI (MANE) collaboration, to converge on human gene and transcript annotation and to jointly define a high-value set of transcripts and corresponding proteins. Here, we describe the MANE transcript sets for use as universal standards for variant reporting and browser display. The MANE Select set identifies a representative transcript for each human protein-coding gene, whereas the MANE Plus Clinical set provides additional transcripts at loci where the Select transcripts alone are not sufficient to report all currently known clinical variants. Each MANE transcript represents an exact match between the exonic sequences of an Ensembl/GENCODE transcript and its counterpart in RefSeq such that the identifiers can be used synonymously. We have now released MANE Select transcripts for 97% of human protein-coding genes, including all American College of Medical Genetics and Genomics Secondary Findings list v3.0 (ref. 3) genes. MANE transcripts are accessible from major genome browsers and key resources. Widespread adoption of these transcript sets will increase the consistency of reporting, facilitate the exchange of data regardless of the annotation source and help to streamline clinical interpretation.


Asunto(s)
Biología Computacional , Bases de Datos Genéticas , Genómica , Genoma , Humanos , Difusión de la Información , Anotación de Secuencia Molecular , National Library of Medicine (U.S.) , Estados Unidos
14.
Neuropathol Appl Neurobiol ; 48(3): e12775, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34820881

RESUMEN

Non-coding DNA (ncDNA) refers to the portion of the genome that does not code for proteins and accounts for the greatest physical proportion of the human genome. ncDNA includes sequences that are transcribed into RNA molecules, such as ribosomal RNAs (rRNAs), microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and un-transcribed sequences that have regulatory functions, including gene promoters and enhancers. Variation in non-coding regions of the genome have an established role in human disease, with growing evidence from many areas, including several cancers, Parkinson's disease and autism. Here, we review the features and functions of the regulatory elements that are present in the non-coding genome and the role that these regions have in human disease. We then review the existing research in epilepsy and emphasise the potential value of further exploring non-coding regulatory elements in epilepsy. In addition, we outline the most widely used techniques for recognising regulatory elements throughout the genome, current methodologies for investigating variation and the main challenges associated with research in the field of non-coding DNA.


Asunto(s)
Epilepsia , MicroARNs , ARN Largo no Codificante , Epilepsia/genética , Genoma , Humanos , MicroARNs/genética , ARN Largo no Codificante/genética
16.
Nucleic Acids Res ; 49(D1): D916-D923, 2021 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-33270111

RESUMEN

The GENCODE project annotates human and mouse genes and transcripts supported by experimental data with high accuracy, providing a foundational resource that supports genome biology and clinical genomics. GENCODE annotation processes make use of primary data and bioinformatic tools and analysis generated both within the consortium and externally to support the creation of transcript structures and the determination of their function. Here, we present improvements to our annotation infrastructure, bioinformatics tools, and analysis, and the advances they support in the annotation of the human and mouse genomes including: the completion of first pass manual annotation for the mouse reference genome; targeted improvements to the annotation of genes associated with SARS-CoV-2 infection; collaborative projects to achieve convergence across reference annotation databases for the annotation of human and mouse protein-coding genes; and the first GENCODE manually supervised automated annotation of lncRNAs. Our annotation is accessible via Ensembl, the UCSC Genome Browser and https://www.gencodegenes.org.


Asunto(s)
COVID-19/prevención & control , Biología Computacional/métodos , Bases de Datos Genéticas , Genómica/métodos , Anotación de Secuencia Molecular/métodos , SARS-CoV-2/genética , Animales , COVID-19/epidemiología , COVID-19/virología , Epidemias , Humanos , Internet , Ratones , Seudogenes/genética , ARN Largo no Codificante/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Transcripción Genética/genética
17.
Haematologica ; 106(10): 2613-2623, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32703790

RESUMEN

Transcriptional profiling of hematopoietic cell subpopulations has helped to characterize the developmental stages of the hematopoietic system and the molecular bases of malignant and non-malignant blood diseases. Previously, only the genes targeted by expression microarrays could be profiled genome-wide. High-throughput RNA sequencing, however, encompasses a broader repertoire of RNA molecules, without restriction to previously annotated genes. We analyzed the BLUEPRINT consortium RNA-sequencing data for mature hematopoietic cell types. The data comprised 90 total RNA-sequencing samples, each composed of one of 27 cell types, and 32 small RNA-sequencing samples, each composed of one of 11 cell types. We estimated gene and isoform expression levels for each cell type using existing annotations from Ensembl. We then used guided transcriptome assembly to discover unannotated transcripts. We identified hundreds of novel non-coding RNA genes and showed that the majority have cell type-dependent expression. We also characterized the expression of circular RNA and found that these are also cell type-specific. These analyses refine the active transcriptional landscape of mature hematopoietic cells, highlight abundant genes and transcriptional isoforms for each blood cell type, and provide a valuable resource for researchers of hematologic development and diseases. Finally, we made the data accessible via a web-based interface: https://blueprint.haem.cam.ac.uk/bloodatlas/.


Asunto(s)
ARN Largo no Codificante , Transcriptoma , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , ARN Circular , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN
18.
BMC Biol ; 18(1): 132, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32988407

RESUMEN

BACKGROUND: The introduction of novel CTCF binding sites in gene regulatory regions in the rodent lineage is partly the effect of transposable element expansion, particularly in the murine lineage. The exact mechanism and functional impact of evolutionarily novel CTCF binding sites are not yet fully understood. We investigated the impact of novel subspecies-specific CTCF binding sites in two Mus genus subspecies, Mus musculus domesticus and Mus musculus castaneus, that diverged 0.5 million years ago. RESULTS: CTCF binding site evolution is influenced by the action of the B2-B4 family of transposable elements independently in both lineages, leading to the proliferation of novel CTCF binding sites. A subset of evolutionarily young sites may harbour transcriptional functionality as evidenced by the stability of their binding across multiple tissues in M. musculus domesticus (BL6), while overall the distance of subspecies-specific CTCF binding to the nearest transcription start sites and/or topologically associated domains (TADs) is largely similar to musculus-common CTCF sites. Remarkably, we discovered a recurrent regulatory architecture consisting of a CTCF binding site and an interferon gene that appears to have been tandemly duplicated to create a 15-gene cluster on chromosome 4, thus forming a novel BL6 specific immune locus in which CTCF may play a regulatory role. CONCLUSIONS: Our results demonstrate that thousands of CTCF binding sites show multiple functional signatures rapidly after incorporation into the genome.


Asunto(s)
Factor de Unión a CCCTC/genética , Evolución Molecular , Genoma , Animales , Sitios de Unión/genética , Factor de Unión a CCCTC/metabolismo , Perfilación de la Expresión Génica , Masculino , Ratones , Familia de Multigenes/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Especificidad de la Especie
19.
Nature ; 581(7809): 452-458, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32461655

RESUMEN

The acceleration of DNA sequencing in samples from patients and population studies has resulted in extensive catalogues of human genetic variation, but the interpretation of rare genetic variants remains problematic. A notable example of this challenge is the existence of disruptive variants in dosage-sensitive disease genes, even in apparently healthy individuals. Here, by manual curation of putative loss-of-function (pLoF) variants in haploinsufficient disease genes in the Genome Aggregation Database (gnomAD)1, we show that one explanation for this paradox involves alternative splicing of mRNA, which allows exons of a gene to be expressed at varying levels across different cell types. Currently, no existing annotation tool systematically incorporates information about exon expression into the interpretation of variants. We develop a transcript-level annotation metric known as the 'proportion expressed across transcripts', which quantifies isoform expression for variants. We calculate this metric using 11,706 tissue samples from the Genotype Tissue Expression (GTEx) project2 and show that it can differentiate between weakly and highly evolutionarily conserved exons, a proxy for functional importance. We demonstrate that expression-based annotation selectively filters 22.8% of falsely annotated pLoF variants found in haploinsufficient disease genes in gnomAD, while removing less than 4% of high-confidence pathogenic variants in the same genes. Finally, we apply our expression filter to the analysis of de novo variants in patients with autism spectrum disorder and intellectual disability or developmental disorders to show that pLoF variants in weakly expressed regions have similar effect sizes to those of synonymous variants, whereas pLoF variants in highly expressed exons are most strongly enriched among cases. Our annotation is fast, flexible and generalizable, making it possible for any variant file to be annotated with any isoform expression dataset, and will be valuable for the genetic diagnosis of rare diseases, the analysis of rare variant burden in complex disorders, and the curation and prioritization of variants in recall-by-genotype studies.


Asunto(s)
Enfermedad/genética , Haploinsuficiencia/genética , Mutación con Pérdida de Función/genética , Anotación de Secuencia Molecular , Transcripción Genética , Transcriptoma/genética , Trastorno del Espectro Autista/genética , Conjuntos de Datos como Asunto , Discapacidades del Desarrollo/genética , Exones/genética , Femenino , Genotipo , Humanos , Discapacidad Intelectual/genética , Masculino , Anotación de Secuencia Molecular/normas , Distribución de Poisson , ARN Mensajero/análisis , ARN Mensajero/genética , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Reproducibilidad de los Resultados , Secuenciación del Exoma
20.
BMC Genet ; 21(1): 25, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-32138667

RESUMEN

BACKGROUND: POLG, located on nuclear chromosome 15, encodes the DNA polymerase γ(Pol γ). Pol γ is responsible for the replication and repair of mitochondrial DNA (mtDNA). Pol γ is the only DNA polymerase found in mitochondria for most animal cells. Mutations in POLG are the most common single-gene cause of diseases of mitochondria and have been mapped over the coding region of the POLG ORF. RESULTS: Using PhyloCSF to survey alternative reading frames, we found a conserved coding signature in an alternative frame in exons 2 and 3 of POLG, herein referred to as ORF-Y that arose de novo in placental mammals. Using the synplot2 program, synonymous site conservation was found among mammals in the region of the POLG ORF that is overlapped by ORF-Y. Ribosome profiling data revealed that ORF-Y is translated and that initiation likely occurs at a CUG codon. Inspection of an alignment of mammalian sequences containing ORF-Y revealed that the CUG codon has a strong initiation context and that a well-conserved predicted RNA stem-loop begins 14 nucleotides downstream. Such features are associated with enhanced initiation at near-cognate non-AUG codons. Reanalysis of the Kim et al. (2014) draft human proteome dataset yielded two unique peptides that map unambiguously to ORF-Y. An additional conserved uORF, herein referred to as ORF-Z, was also found in exon 2 of POLG. Lastly, we surveyed Clinvar variants that are synonymous with respect to the POLG ORF and found that most of these variants cause amino acid changes in ORF-Y or ORF-Z. CONCLUSIONS: We provide evidence for a novel coding sequence, ORF-Y, that overlaps the POLG ORF. Ribosome profiling and mass spectrometry data show that ORF-Y is expressed. PhyloCSF and synplot2 analysis show that ORF-Y is subject to strong purifying selection. An abundance of disease-correlated mutations that map to exons 2 and 3 of POLG but also affect ORF-Y provides potential clinical significance to this finding.


Asunto(s)
Codón Iniciador/genética , ADN Polimerasa gamma/genética , Mitocondrias/genética , Ribosomas/genética , Secuencia de Aminoácidos , ADN Mitocondrial/genética , Exones/genética , Humanos , Conformación de Ácido Nucleico , Sistemas de Lectura Abierta/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...