Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Sep Sci ; 47(11): e2400181, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38863110

RESUMEN

Topotecan (TPT) is used in the treatment of retinoblastoma, the most common malignant intraocular tumor in children. TPT undergoes pH-dependent hydrolysis of the lactone ring to the ring-opened carboxylate form, with the lactone form showing antitumor activity. A selective, and highly sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry method was developed for the determination of both forms of TPT in one mobile phase composition in plasma and vitreous humor matrices. The method showed an excellent linear range of 0.375-120 ng/mL for the lactone. For the carboxylate, the linear range was from 0.75 to 120 ng/mL. The matrix effect and the recovery for the lactone ranged from 98.5% to 106.0% in both matrices, for the carboxylate form, it ranged from 94.9% to 101.2%. The dynamics of the transition between TPT lactone and TPT carboxylate were evaluated at different pH environments. The stability of TPT forms was assessed in plasma and vitreous humor at 8 and 37°C and a very fast conversion of lactone to carboxylate form occurred at 37°C in both matrices. The method developed facilitates the investigation of TPT pharmacodynamics and the release kinetics in the development of the innovative local drug delivery systems.


Asunto(s)
Lactonas , Espectrometría de Masas en Tándem , Topotecan , Cuerpo Vítreo , Cromatografía Líquida de Alta Presión , Lactonas/química , Lactonas/análisis , Cuerpo Vítreo/química , Topotecan/química , Topotecan/análisis , Humanos , Ácidos Carboxílicos/química , Ácidos Carboxílicos/análisis , Estructura Molecular
2.
Pharmaceutics ; 15(5)2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37242640

RESUMEN

Local chemotherapy using polymer drug delivery systems has the potential to treat some cancers, including intraocular retinoblastoma, which is difficult to treat with systemically delivered drugs. Well-designed carriers can provide the required drug concentration at the target site over a prolonged time, reduce the overall drug dose needed, and suppress severe side effects. Herein, nanofibrous carriers of the anticancer agent topotecan (TPT) with a multilayered structure composed of a TPT-loaded inner layer of poly(vinyl alcohol) (PVA) and outer covering layers of polyurethane (PUR) are proposed. Scanning electron microscopy showed homogeneous incorporation of TPT into the PVA nanofibers. HPLC-FLD proved the good loading efficiency of TPT (≥85%) with a content of the pharmacologically active lactone TPT of more than 97%. In vitro release experiments demonstrated that the PUR cover layers effectively reduced the initial burst release of hydrophilic TPT. In a 3-round experiment with human retinoblastoma cells (Y-79), TPT showed prolonged release from the sandwich-structured nanofibers compared with that from a PVA monolayer, with significantly enhanced cytotoxic effects as a result of an increase in the PUR layer thickness. The presented PUR-PVA/TPT-PUR nanofibers appear to be promising carriers of active TPT lactone that could be useful for local cancer therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...