Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Food Nutr Bull ; 44(1_suppl): S14-S26, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36016479

RESUMEN

This article presents the evolution of the biofortification program in Nigeria over the last decade and the role of interdisciplinary research in informing cost-effective, efficient, and inclusive development; implementation; and scaling of this program. Launched in 2011 to improve Nigeria's food systems to deliver accessible and affordable nutrients through commonly consumed staples, the Nigeria biofortification program was implemented through an effective partnership between the CGIAR and public, private, and civil society sectors at federal, state, and local levels. By the end of 2021, several biofortified varieties of Nigeria's 2 main staples, namely cassava and maize, were officially released for production by smallholders, with several biofortified varieties of other key staples (including pearl millet, rice, and sorghum) either under testing or in the release pipeline. In 2021, the program was estimated to benefit 13 million Nigerians consuming biofortified cassava and maize varieties. The evidence on the nutritional impact, consumer and farmer acceptance, and cost-effective scalability of biofortified crops documented by the program resulted in the integration of biofortified crops in several key national public policies and social protection programs; private seed and food company products/investments, as well as in humanitarian aid.


Asunto(s)
Biofortificación , Alimentos Fortificados , Humanos , Productos Agrícolas , Micronutrientes , Verduras
2.
Front Nutr ; 9: 963748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36313073

RESUMEN

Sound monitoring and evaluation (M&E) systems are needed to inform effective biofortification program management and implementation. Despite the existence of M&E frameworks for biofortification programs, the use of indicators, metrics, methods, and tools (IMMT) are currently not harmonized, rendering the tracking of biofortification programs difficult. We aimed to compile IMMT for M&E of existing biofortification programs and recommend a sub-set of high-level indicators (HLI) for a harmonized global M&E framework. We conducted (1) a mapping review to compile IMMT for M&E biofortification programs; (2) semi-structured interviews (SSIs) with biofortification programming experts (and other relevant stakeholders) to contextualize findings from step 1; and (3) compiled a generic biofortification program Theory of Change (ToC) to use it as an analytical framework for selecting the HLI. This study revealed diversity in seed systems and crop value chains across countries and crops, resulting in differences in M&E frameworks. Yet, sufficient commonalities between implementation pathways emerged. A set of 17 HLI for tracking critical results along the biofortification implementation pathway represented in the ToC is recommended for a harmonized global M&E framework. Further research is needed to test, revise, and develop mechanisms to harmonize the M&E framework across programs, institutions, and countries.

3.
Food Nutr Bull ; 42(1): 116-132, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33593095

RESUMEN

BACKGROUND: Micronutrient deficiencies affect over one quarter of the world's population. Biofortification is an evidence-based nutrition strategy that addresses some of the most common and preventable global micronutrient gaps and can help improve the health of millions of people. Since 2013, HarvestPlus and a consortium of collaborators have made impressive progress in the enrichment of staple crops with essential micronutrients through conventional plant breeding. OBJECTIVE: To review and highlight lessons learned from multiple large-scale delivery strategies used by HarvestPlus to scale up biofortification across different country and crop contexts. RESULTS: India has strong public and private sector pearl millet breeding programs and a robust commercial seed sector. To scale-up pearl millet, HarvestPlus established partnerships with public and private seed companies, which facilitated the rapid commercialization of products and engagement of farmers in delivery activities. In Nigeria, HarvestPlus stimulated the initial acceptance and popularization of vitamin A cassava using a host of creative approaches, including "crowding in" delivery partners, innovative promotional programs, and development of intermediate raw material for industry and novel food products. In Uganda, orange sweet potato (OSP) is a traditional subsistence crop. Due to this, and the lack of formal seed systems and markets, HarvestPlus established a network of partnerships with community-based nongovernmental organizations and vine multipliers to popularize and scale-up delivery of OSP. CONCLUSIONS: Impact of biofortification ultimately depends on the development of sustainable markets for biofortified seeds and products. Results illustrate the need for context-specific, innovative solutions to promote widespread adoption.


Asunto(s)
Biofortificación , Alimentos Fortificados , Disponibilidad Biológica , Productos Agrícolas , Humanos , Micronutrientes
4.
Curr Dev Nutr ; 4(8): nzaa107, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32734133

RESUMEN

BACKGROUND: Biofortification of staple crops has the potential to increase nutrient intakes and improve health outcomes. Despite program data on the number of farming households reached with and growing biofortified crops, information on the coverage of biofortified foods in the general population is often lacking. Such information is needed to ascertain potential for impact and identify bottlenecks to parts of the impact pathway. OBJECTIVES: We aimed to develop and test methods and indicators for assessing household coverage of biofortified foods. METHODS: To assess biofortification programs, 5 indicators of population-wide household coverage were developed, building on approaches previously used to assess large-scale food fortification programs. These were 1) consumption of the food; 2) awareness of the biofortified food; 3) availability of the biofortified food; 4) consumption of the biofortified food (ever); and 5) consumption of the biofortified food (current). To ensure that the indicators are applicable to different settings they were tested in a cross-sectional household-based cluster survey in rural and peri-urban areas in Musanze District, Rwanda where planting materials for iron-biofortified beans (IBs) and orange-fleshed sweet potatoes (OFSPs) were delivered. RESULTS: Among the 242 households surveyed, consumption of beans and sweet potatoes was 99.2% and 96.3%, respectively. Awareness of IBs or OFSPs was 65.7% and 48.8%, and availability was 23.6% and 10.7%, respectively. Overall, 15.3% and 10.7% of households reported ever consuming IBs and OFSPs, and 10.4% and 2.1% of households were currently consuming these foods, respectively. The major bottlenecks to coverage of biofortified foods were awareness and availability. CONCLUSIONS: These methods and indicators fill a gap in the availability of tools to assess coverage of biofortified foods, and the results of the survey highlight their utility for identifying bottlenecks. Further testing is warranted to confirm the generalizability of the coverage indicators and inform their operationalization when deployed in different settings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...