Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Top Microbiol Immunol ; 441: 111-137, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37695427

RESUMEN

Males and females differ in the outcome of influenza A virus (IAV) infections, which depends significantly on age. During seasonal influenza epidemics, young children (< 5 years of age) and aged adults (65+ years of age) are at greatest risk for severe disease, and among these age groups, males tend to suffer a worse outcome from IAV infection than females. Following infection with pandemic strains of IAVs, females of reproductive ages (i.e., 15-49 years of age) experience a worse outcome than their male counterparts. Although females of reproductive ages experience worse outcomes from IAV infection, females typically have greater immune responses to influenza vaccination as compared with males. Among females of reproductive ages, pregnancy is one factor linked to an increased risk of severe outcome of influenza. Small animal models of influenza virus infection and vaccination illustrate that immune responses and repair of damaged tissue following IAV infection also differ between the sexes and impact the outcome of infection. There is growing evidence that sex steroid hormones, including estrogens, progesterone, and testosterone, directly impact immune responses during IAV infection and vaccination. Greater consideration of the combined effects of sex and age as biological variables in epidemiological, clinical, and animal studies of influenza pathogenesis is needed.


Asunto(s)
Gripe Humana , Masculino , Animales , Femenino , Embarazo , Humanos , Gripe Humana/prevención & control , Vacunación , Modelos Animales , Pandemias , Reproducción
2.
mBio ; 13(4): e0183922, 2022 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-35856618

RESUMEN

Inactivated influenza vaccines induce greater antibody responses in females than males among both humans and mice. To test the breadth of protection, we used recombinant mouse-adapted A/California/2009 (maA/Cal/09) H1N1 viruses containing mutations at one (1M), two (2M), or three (3M) antigenic sites, in addition to a virus containing the 1M mutation and a substitution of the Ca2 antigenic site (Sub) with one derived from an H5 hemagglutinin (HA) to challenge mice of both sexes. Following maA/Cal/09 vaccination, females produced greater virus-specific, class-switched total IgG and IgG2c antibodies against the vaccine and all mutant viruses, and antibodies from females recognized a greater number of unique, linear HA epitopes than did antibodies from males. While females had greater neutralizing antibody titers against the vaccine virus, both sexes showed a lower neutralization capacity against mutant viruses. After virus challenge, vaccinated females had lower pulmonary virus titers and reduced morbidity than males for the 1M and 2M viruses, but not the Sub virus. Females generated greater numbers of germinal center (GC) B cells containing superior somatic hypermutation (SHM) frequencies than vaccinated males. Deletion of activation-induced cytidine deaminase (Aicda) eliminated female-biased immunity and protection against the 2M virus. Harnessing methods to improve GC B cell responses and frequencies of SHM, especially in males, should be considered in the development of universal influenza vaccines. IMPORTANCE Adult females develop greater antibody responses to influenza vaccines than males. We hypothesized that female-biased immunity and protection would be dependent on the extent of virus diversity as well as molecular mechanisms in B cells which constrain the breadth of epitope recognition. We developed a panel of mouse-adapted (ma) A/Cal/09 viruses that had mutations in the immunodominant hemagglutinin. Following vaccination against maA/Cal/09, females were better able to neutralize maA/Cal/09 than males, but neutralization of mutant maA/Cal/09 viruses was equally poor in both sexes, despite vaccinated females being better protected against these viruses. Vaccinated females benefited from the greater production of class-switched, somatically hypermutated antibodies generated in germinal center B cells, which increased recognition of more diverse maA/Cal/09 hemagglutinin antigen epitopes. Female-biased protection against influenza infection and disease after vaccination is driven by differential mechanisms in males versus females and should be considered in the design of novel vaccine platforms.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Animales , Anticuerpos Antivirales , Diversidad de Anticuerpos , Epítopos , Femenino , Centro Germinal , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Masculino , Ratones , Vacunas de Productos Inactivados
3.
Immunity ; 55(7): 1150-1152, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35830823

RESUMEN

The prevalence and severity of cancers in non-reproductive tissues are greater in males than females, but the sex-specific factors contributing to this remain ill described. In this issue of Immunity, Yang et al. (2022) uncover a mechanism of androgen signaling leading to an exhausted, terminally differentiated CD8+ T cell phenotype in male mice.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias , Animales , Diferenciación Celular , Femenino , Humanos , Masculino , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...