RESUMEN
Potato (Solanum tuberosum) is an essential crop for food security and is ranked as the third most important crop worldwide for human consumption. The Diacol Capiro cultivar holds the dominant position in Colombian cultivation, primarily catering to the food processing industry. This highly heterozygous, autotetraploid cultivar belongs to the Andigenum group and it stands out for its adaptation to a wide variety of environments spanning altitudes from 1,800 to 3,200 meters above sea level. Here, a chromosome-scale assembly, referred to as DC, is presented for this cultivar. The assembly was generated by combining circular consensus sequencing with proximity ligation Hi-C for the scaffolding and represents 2.369 Gb with 48 pseudochromosomes covering 2,091 Gb and an anchor rate of 88.26%. The reference genome metrics, including an N50 of 50.5 Mb, a BUSCO (Benchmarking Universal Single-Copy Orthologue) score of 99.38%, and an Long Terminal Repeat Assembly Index score of 13.53, collectively signal the achieved high assembly quality. A comprehensive annotation yielded a total of 154,114 genes, and the associated BUSCO score of 95.78% for the annotated sequences attests to their completeness. The number of predicted NLR (Nucleotide-Binding and Leucine-Rich-Repeat genes) was 2107 with a large representation of NBARC (for nucleotide binding domain shared by Apaf-1, certain R gene products, and CED-4) containing domains (99.85%). Further comparative analysis of the proposed annotation-based assembly with high-quality known potato genomes, showed a similar genome metrics with differences in total gene numbers related to the ploidy status. The genome assembly and annotation of DC presented in this study represent a valuable asset for comprehending potato genetics. This resource aids in targeted breeding initiatives and contributes to the creation of enhanced, resilient, and more productive potato varieties, particularly beneficial for countries in Latin America.
Asunto(s)
Cromosomas de las Plantas , Genoma de Planta , Anotación de Secuencia Molecular , Solanum tuberosum , Tetraploidía , Solanum tuberosum/genética , Cromosomas de las Plantas/genética , Genómica/métodos , Mapeo CromosómicoRESUMEN
Genomic prediction (GP) offers great opportunities for accelerated genetic gains by optimizing the breeding pipeline. One of the key factors to be considered is how the training populations (TP) are composed in terms of genetic improvement, kinship/origin, and their impacts on GP. Hydrogen cyanide content (HCN) is a determinant trait to guide cassava's products usage and processing. This work aimed to achieve the following objectives: (i) evaluate the feasibility of using cross-country (CC) GP between germplasm's of Embrapa Mandioca e Fruticultura (Embrapa, Brazil) and The International Institute of Tropical Agriculture (IITA, Nigeria) for HCN; (ii) provide an assessment of population structure for the joint dataset; (iii) estimate the genetic parameters based on single nucleotide polymorphisms (SNPs) and a haplotype-approach. Datasets of HCN from Embrapa and IITA breeding programs were analyzed, separately and jointly, with 1,230, 590, and 1,820 clones, respectively. After quality control, â¼14K SNPs were used for GP. The genomic estimated breeding values (GEBVs) were predicted based on SNP effects from analyses with TP composed of the following: (i) Embrapa genotypic and phenotypic data, (ii) IITA genotypic and phenotypic data, and (iii) the joint datasets. Comparisons on GEBVs' estimation were made considering the hypothetical situation of not having the phenotypic characterization for a set of clones for a certain research institute/country and might need to use the markers' effects that were trained with data from other research institutes/country's germplasm to estimate their clones' GEBV. Fixation index (FST) among the genetic groups identified within the joint dataset ranged from 0.002 to 0.091. The joint dataset provided an improved accuracy (0.8-0.85) compared to the prediction accuracy of either germplasm's sources individually (0.51-0.67). CC GP proved to have potential use under the present study's scenario, the correlation between GEBVs predicted with TP from Embrapa and IITA was 0.55 for Embrapa's germplasm, whereas for IITA's it was 0.1. This seems to be among the first attempts to evaluate the CC GP in plants. As such, a lot of useful new information was provided on the subject, which can guide new research on this very important and emerging field.
RESUMEN
KEY MESSAGE: Brazilian cassava diversity was characterized through population genetics and clustering approaches, highlighting contrasted genetic groups and spatial genetic differentiation. Cassava (Manihot esculenta Crantz) is a major staple root crop of the tropics, originating from the Amazonian region. In this study, 3354 cassava landraces and modern breeding lines from the Embrapa Cassava Germplasm Bank (CGB) were characterized. All individuals were subjected to genotyping-by-sequencing (GBS), identifying 27,045 single-nucleotide polymorphisms (SNPs). Identity-by-state and population structure analyses revealed a unique set of 1536 individuals and 10 distinct genetic groups with heterogeneous linkage disequilibrium (LD). On this basis, a density of 1300-4700 SNP markers were selected for large-effect quantitative trait loci (QTL) detection. Identified genetic groups were further characterized for population genetics parameters including minor allele frequency (MAF), observed heterozygosity [Formula: see text], effective population size estimate [Formula: see text]) and polymorphism information content (PIC). Selection footprints and introgressions of M. glaziovii were detected. Spatial population structure analysis revealed five ancestral populations related to distinct Brazilian ecoregions. Estimation of historical relationships among identified populations suggests an early population split from Amazonian to Atlantic forest and Caatinga ecoregions and active gene flows. This study provides a thorough genetic characterization of ex situ germplasm resources from cassava's center of origin, South America, with results shedding light on Brazilian cassava characteristics and its biogeographical landscape. These findings support and facilitate the use of genetic resources in modern breeding programs including implementation of association mapping and genomic selection strategies.
Asunto(s)
Cromosomas de las Plantas/genética , Genética de Población , Genoma de Planta , Manihot/genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Banco de Semillas/estadística & datos numéricos , Mapeo Cromosómico/métodos , Domesticación , Desequilibrio de Ligamiento , Manihot/crecimiento & desarrollo , Manihot/metabolismo , FitomejoramientoRESUMEN
Manihot esculenta (cassava) is a root crop originating from South America that is a major staple in the tropics, including in marginal environments. This study focused on South American and African germplasm and investigated the genetic architecture of hydrogen cyanide (HCN), a major component of root quality. HCN, representing total cyanogenic glucosides, is a plant defense component against herbivory but is also toxic for human consumption. We genotyped 3354 landraces and modern breeding lines originating from 26 Brazilian states and 1389 individuals were phenotypically characterized across multi-year trials for HCN. All plant material was subjected to high-density genotyping using genotyping by sequencing. We performed genome-wide association mapping to characterize the genetic architecture and gene mapping of HCN. Field experiments revealed strong broad- and narrow-sense trait heritability (0.82 and 0.41, respectively). Two major loci were identified, encoding for an ATPase and a MATE protein, and contributing up to 7 and 30% of the HCN concentration in roots, respectively. We developed diagnostic markers for breeding applications, validated trait architecture consistency in African germplasm and investigated further evidence for the domestication of sweet and bitter cassava. Fine genomic characterization revealed: (i) the major role played by vacuolar transporters in regulating HCN content; (ii) the co-domestication of sweet and bitter cassava major alleles are dependent upon geographical zone; and (iii) the major loci allele for high HCN in M. esculenta Crantz seems to originate from its ancestor, M. esculenta subsp. flabellifolia. Taken together, these findings expand our insights into cyanogenic glucosides in cassava roots and its glycosylated derivatives in plants.
Asunto(s)
Glicósidos/genética , Manihot/genética , África , Alelos , Brasil , Cromosomas de las Plantas , Genética de Población , Estudio de Asociación del Genoma Completo , Glicósidos/metabolismo , Cianuro de Hidrógeno/metabolismo , América Latina , Manihot/metabolismo , Mutación , Filogenia , Fitomejoramiento/métodos , Proteínas de Plantas/genética , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Polimorfismo de Nucleótido Simple , GustoRESUMEN
Capsicum annuum is one of the most important horticultural crops worldwide. Anthracnose disease (Colletotrichum spp.) is a major constraint for chili production, causing substantial losses. Capsidiol is a sesquiterpene phytoalexin present in pepper fruits that can enhance plant resistance. The genetic mechanisms involved in capisidiol biosynthesis are still poorly understood. In this study, a 3' RNA sequencing approach was used to develop the transcriptional profile dataset of C. annuum genes in unripe (UF) and ripe fruits (RF) in response to C. scovillei infection. Results showed 4,845 upregulated and 4,720 downregulated genes in UF, and 2,560 upregulated and 1,762 downregulated genes in RF under fungus inoculation. Four capsidiol-related genes were selected for RT-qPCR analysis, two 5-epi-aristolochene synthase (CA12g05030, CA02g09520) and two 5-epi-aristolochene-1,3-dihydroxylase genes (CA12g05070, CA01g05990). CA12g05030 and CA01g05990 genes showed an early response to fungus infection in RF (24 h post-inoculation-HPI), being 68-fold and 53-fold more expressed at 96 HPI, respectively. In UF, all genes showed a late response, especially CA12g05030, which was 700-fold more expressed at 96 HPI compared to control plants. We are proving here the first high-throughput expression dataset of pepper fruits in response to anthracnose disease in order to contribute for future pepper breeding programs.
Asunto(s)
Capsicum/genética , Capsicum/microbiología , Colletotrichum , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Sesquiterpenos/metabolismo , Biología Computacional/métodos , Minería de Datos , Frutas/metabolismo , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , TranscriptomaRESUMEN
Centromeric regions of plants are generally composed of large array of satellites from a specific lineage of Gypsy LTR-retrotransposons, called Centromeric Retrotransposons. Repeated sequences interact with a specific H3 histone, playing a crucial function on kinetochore formation. To study the structure and composition of centromeric regions in the genus Coffea, we annotated and classified Centromeric Retrotransposons sequences from the allotetraploid C. arabica genome and its two diploid ancestors: Coffea canephora and C. eugenioides. Ten distinct CRC (Centromeric Retrotransposons in Coffea) families were found. The sequence mapping and FISH experiments of CRC Reverse Transcriptase domains in C. canephora, C. eugenioides, and C. arabica clearly indicate a strong and specific targeting mainly onto proximal chromosome regions, which can be associated also with heterochromatin. PacBio genome sequence analyses of putative centromeric regions on C. arabica and C. canephora chromosomes showed an exceptional density of one family of CRC elements, and the complete absence of satellite arrays, contrasting with usual structure of plant centromeres. Altogether, our data suggest a specific centromere organization in Coffea, contrasting with other plant genomes.
RESUMEN
BACKGROUND: Vascular wilt caused by Fusarium oxysporum is the most important disease in cape gooseberry (Physalis peruviana L.) in Colombia. The development of resistant cultivars is considered one of the most cost-effective means to reduce the impact of this disease. In order to do so, it is necessary to provide breeders with molecular markers and promising germplasm for introgression of different resistance loci as part of breeding schemes. Here we described an association mapping study in cape gooseberry with the goal to: (i) select promising materials for use in plant breeding and (ii) identify SNPs associated with the cape gooseberry resistance response to the F. oxysporum pathogen under greenhouse conditions, as potential markers for cape gooseberry breeding. RESULTS: We found a total of 21 accessions with different resistance responses within a diversity panel of 100 cape gooseberry accessions. A total of 60,663 SNPs were also identified within the same panel by means of GBS (Genotyping By Sequencing). Model-based population structure and neighbor-joining analyses showed three populations comprising the cape gooseberry panel. After correction for population structure and kinship, we identified SNPs markers associated with the resistance response against F. oxysporum. The identification of markers was based on common tags using the reference genomes of tomato and potato as well as the root/stem transcriptome of cape gooseberry. By comparing their location with the tomato genome, 16 SNPs were found in genes involved in defense/resistance response to pathogens, likewise when compared with the genome of potato, 12 markers were related. CONCLUSIONS: The work presented herein provides the first association mapping study in cape gooseberry showing both the identification of promising accessions with resistance response phenotypes and the identification of a set of SNP markers mapped to defense/resistance response genes of reference genomes. Thus, the work also provides new knowledge on candidate genes involved in the P. peruviana - F. oxysporum pathosystem as a foundation for further validation in marker-assisted selection. The results have important implications for conservation and breeding strategies in cape gooseberry.
Asunto(s)
Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Fusarium , Physalis/genética , Enfermedades de las Plantas/genética , Marcadores Genéticos , Genotipo , Fenotipo , Physalis/microbiología , Enfermedades de las Plantas/microbiología , Polimorfismo de Nucleótido Simple , TranscriptomaRESUMEN
BACKGROUND: Conserved ortholog set (COS) markers are an important functional genomics resource that has greatly improved orthology detection in Asterid species. A comprehensive list of these markers is available at Sol Genomics Network (http://solgenomics.net/) and many of these have been placed on the genetic maps of a number of solanaceous species. RESULTS: We amplified over 300 COS markers from eight potato accessions involving two diploid landraces of Solanum tuberosum Andigenum group (formerly classified as S. goniocalyx, S. phureja), and a dihaploid clone derived from a modern tetraploid cultivar of S. tuberosum and the wild species S. berthaultii, S. chomatophilum, and S. paucissectum. By BLASTn (Basic Local Alignment Search Tool of the NCBI, National Center for Biotechnology Information) algorithm we mapped the DNA sequences of these markers into the potato genome sequence. Additionally, we mapped a subset of these markers genetically in potato and present a comparison between the physical and genetic locations of these markers in potato and in comparison with the genetic location in tomato. We found that most of the COS markers are single-copy in the reference genome of potato and that the genetic location in tomato and physical location in potato sequence are mostly in agreement. However, we did find some COS markers that are present in multiple copies and those that map in unexpected locations. Sequence comparisons between species show that some of these markers may be paralogs. CONCLUSIONS: The sequence-based physical map becomes helpful in identification of markers for traits of interest thereby reducing the number of markers to be tested for applications like marker assisted selection, diversity, and phylogenetic studies.
Asunto(s)
Secuencia Conservada , Genoma de Planta , Solanum tuberosum/genética , Evolución Molecular , Ligamiento GenéticoRESUMEN
BACKGROUND: Recent genomic studies have drastically altered our knowledge of polyploid evolution. Wild potatoes (Solanum section Petota) are a highly diverse and economically important group of about 100 species widely distributed throughout the Americas. Thirty-six percent of the species in section Petota are polyploid or with diploid and polyploid cytotypes. However, the group is poorly understood at the genomic level and the series is ideal to study polyploid evolution. Two separate studies using the nuclear orthologs GBSSI and nitrate reductase confirmed prior hypotheses of polyploid origins in potato and have shown new origins not proposed before. These studies have been limited, however, by the use of few accessions per polyploid species and by low taxonomic resolution, providing clade-specific, but not species-specific origins within clades. The purpose of the present study is to use six nuclear orthologs, within 54 accessions of 11 polyploid species, 34 accessions of 29 diploid species of section Petota representing their putative progenitors, and two outgroups, to see if phenomena typical of other polyploid groups occur within wild potatoes, to include multiple origins, loss of alleles, or gain of new alleles. RESULTS: Our results increase resolution within clades, giving better ideas of diploid progenitors, and show unexpected complexity of allele sharing within clades. While some species have little diversity among accessions and concur with the GBSSI and nitrate reductase results, such as S. agrimonifolium, S. colombianum, S. hjertingii, and S. moscopanum, the results give much better resolution of species-specific progenitors. Seven other species, however, show variant patterns of allele distributions suggesting multiple origins and allele loss. Complex three-genome origins are supported for S. hougasii, and S. schenckii, and one of the ten accessions of S. stoloniferum. A very unexpected shared presence of alleles occurs within one clade of S. verrucosum from Central America, and S. berthaultii from South America in six polyploid species S. demissum, S. hjertingii, S. hougasii, S. iopetalum, S. schenckii, and S. stoloniferum. CONCLUSIONS: Our results document considerable genomic complexity of some wild potato polyploids. These can be explained by multiple hybrid origins and allele losses that provide a clear biological explanation for the taxonomic complexity in wild potato polyploids. These results are of theoretical and practical benefit to potato breeders, and add to a growing body of evidence showing considerable complexity in polyploid plants in general.