Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Physiol Mol Biol Plants ; 29(12): 2005-2020, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38222272

RESUMEN

Anthracnose (ANT) caused by Colletotrichum lindemuthianum is the most devastating seed-borne fungal disease of common bean. In response to fungal infections, it is hypothesized that pathogen-plant interactions typically cause hypersensitive reactions by producing reactive oxygen species, hydrogen peroxide and lipid peroxidation of cell membranes. esent study was conducted by inoculating susceptible bean genotype "SB174" and resistant bean genotype "E10" with pathogen "C. lindemuthianum". Defense-related enzymes (ascorbate peroxidase, peroxidase, lipid peroxidase, and catalase) and C-based compounds (total phenols and flavonoids) were studied using the detached bean leaf method. Comparative defense response was studied in different plant tissues (pod, stem, and seed) in susceptible and resistant bean genotypes under uninoculated and pathogen-inoculated conditions. The host‒pathogen interaction was studied at mock inoculation, 2, 4 and 6 days after inoculation (dai). Comparing the pathogen-inoculated bean leaves to water-treated bean leaves, defense enzymes as well as total phenols and flavonoids exhibited differential expression. In a comparative study, the enzyme activity also displayed differential biochemical responses in pods, stems and seeds in both contrasting genotypes. For example, 5.1-fold (pod), 1.5-fold (stem) and 1.06-fold (seed) increases in ascorbate peroxidase activity were observed in the susceptible genotype at 6 dai compared to mock inoculation. Similarly, catalase activity in pods was upregulated (1.47-fold) in the resistant genotype and downregulated (1.30-fold) in the susceptible genotype at 6 dai. The study revealed that defense-related antioxidative enzymes, phenols and flavonoids are fine-tuned to detoxify important reactive oxygen species (ROS) molecules, induce systemic resistance and are successfully controlled in common bean plants against pathogen invasion.

2.
Fungal Biol ; 125(9): 733-747, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34420700

RESUMEN

Genome sequence-driven molecular typing tools have the potential to uncover the population biology and genetic diversity of rapidly evolving plant pathogens like Magnaporthe oryzae. Here, we report a new molecular typing technique -a digitally portable tool for population genetic analysis of M. oryzae to decipher the genetic diversity. Our genotyping tool exploiting allelic variations in housekeeping and virulence genes coupled with pathotyping revealed a prevalence of genetically homogenous populations within a single-field and plant niches such as leaf and panicle. The M. oryzae inciting leaf-blast and panicle-blast were confirmed to be genetically identical with no or minor nucleotide polymorphism in 17 genomic loci analyzed. Genetic loci such as Mlc1, Mpg1, Mps1, Slp1, Cal, Ef-Tu, Pfk, and Pgk were highly polymorphic as indicated by the haplotype-diversity, the number of polymorphic sites, and the number of mutations. The genetically homogenous single field population showed high virulence variability or diversity on monogenic rice differentials. The study indicated that the genetic similarity displayed by the isolates collected from a particular geographical location had no consequence on their virulence pattern on rice differentials carrying single/multiple resistance genes. The data on virulence diversity showed by the identical Sequence Types (STs) is indicative of no congruence between polymorphic virulence genes-based pathotyping and conserved housekeeping genes-based genotyping.


Asunto(s)
Ascomicetos , Oryza , Ascomicetos/genética , Ascomicetos/patogenicidad , Genoma Fúngico/genética , Tipificación Molecular , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...