Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Sensors (Basel) ; 24(12)2024 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-38931548

RESUMEN

Thromboembolism, a global leading cause of mortality, needs accurate risk assessment for effective prophylaxis and treatment. Current stratification methods fall short in predicting thrombotic events, emphasizing the need for a deeper understanding of clot properties. Fibrin clot permeability, a crucial parameter in hypercoagulable states, impacts clot structure and resistance to lysis. Current clot permeability measurement limitations propel the need for standardized methods. Prior findings underscore the importance of clot permeability in various thrombotic conditions but call for improvements and more precise, repeatable, and standardized methods. Addressing these challenges, our study presents an upgraded, portable, and cost-effective system for measuring blood clot permeability, which utilizes a pressure-based approach that adheres to Darcy's law. By enhancing precision and sensitivity in discerning clot characteristics, this innovation provides a valuable tool for assessing thrombotic risk and associated pathological conditions. In this paper, the authors present a device that is able to automatically perform the permeability measurements on plasma or fibrinogen in vitro-induced clots on specific holders (filters). The proposed device has been tailored to distinguish clot permeability, with high precision and sensitivity, between healthy subjects and high cardiovascular-risk patients. The precise measure of clot permeability represents an excellent indicator of thrombotic risk, thus allowing the clinician, also on the basis of other anamnestic and laboratory data, to attribute a risk score to the subject. The proposed instrument was characterized by performing permeability measurements in plasma and purified fibrinogen clots derived from 17 Behcet patients and 15 sex- and age-matched controls. As expected, our results clearly indicate a significant difference in plasma clot permeability in Behcet patients with respect to controls (0.0533 ± 0.0199 d vs. 0.0976 ± 0.0160 d, p < 0.001). This difference was confirmed in the patient's vs. control fibrin clots (0.0487 ± 0.0170 d vs. 0.1167 ± 0.0487 d, p < 0.001). In conclusion, our study demonstrates the feasibility, efficacy, portability, and cost-effectiveness of a novel device for measuring clot permeability, allowing healthcare providers to better stratify thrombotic risk and tailor interventions, thereby improving patient outcomes and reducing healthcare costs, which could significantly improve the management of thromboembolic diseases.


Asunto(s)
Fibrina , Permeabilidad , Trombosis , Humanos , Fibrina/metabolismo , Fibrina/química , Coagulación Sanguínea/fisiología , Fibrinógeno/metabolismo , Pruebas de Coagulación Sanguínea/métodos , Pruebas de Coagulación Sanguínea/instrumentación , Masculino
2.
Sensors (Basel) ; 24(11)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38894192

RESUMEN

Quartz Crystal Microbalances (QCMs) are versatile sensors employed in various fields, from environmental monitoring to biomedical applications, owing mainly to their very high sensitivity. However, the assessment of their metrological performance, including the impact of conditioning circuits, digital processing algorithms, and working conditions, is a complex and novel area of study. The purpose of this work is to investigate and understand the measurement errors associated with different QCM measurement techniques, specifically focusing on the influence of conditioning electronic circuits. Through a tailored and novel experimental setup, two measurement architectures-a Quartz Crystal Microbalance with dissipation monitoring (QCM-D) system and an oscillator-based QCM-R system-were compared under the same mechanical load conditions. Through rigorous experimentation and signal processing techniques, the study elucidated the complexities of accurately assessing QCM parameters, especially in liquid environments and under large mechanical loads. The comparison between the two different techniques allows for highlighting the critical aspects of the measurement techniques. The experimental results were discussed and interpreted based on models allowing for a deep understanding of the measurement problems encountered with QCM-based measurement systems. The performance of the different techniques was derived, showing that while the QCM-D technique exhibited higher accuracy, the QCM-R technique offered greater precision with a simpler design. This research advances our understanding of QCM-based measurements, providing insights for designing robust measurement systems adaptable to diverse conditions, thus enhancing their effectiveness in various applications.

3.
Sensors (Basel) ; 23(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37688002

RESUMEN

In this work, we present a diagnosis system for rolling bearings that leverages simultaneous measurements of vibrations and machine rotation speed. Our approach combines the robustness of simple time domain methods for fault detection with the potential of machine learning techniques for fault location. This research is based on a neural network classifier, which exploits a simple and novel preprocessing algorithm specifically designed for minimizing the dependency of the classifier performance on the machine working conditions, on the bearing model and on the acquisition system set-up. The overall diagnosis system is based on light algorithms with reduced complexity and hardware resource demand and is designed to be deployed in embedded electronics. The fault diagnosis system was trained using emulated data, exploiting an ad-hoc test bench thus avoiding the problem of generating enough data, achieving an overall classifier accuracy larger than 98%. Its noteworthy ability to generalize was proven by using data emulating different working conditions and acquisition set-ups and noise levels, obtaining in all the cases accuracies greater than 97%, thereby proving in this way that the proposed system can be applied in a wide spectrum of different applications. Finally, real data from an on-line database containing vibration signals obtained in a completely different scenario are used to demonstrate the distinctive capability of the proposed system to generalize.

4.
Sensors (Basel) ; 23(16)2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37631560

RESUMEN

Active magnetic bearings are complex mechatronic systems that consist of mechanical, electrical, and software parts, unlike classical rolling bearings. Given the complexity of this type of system, fault detection is a critical process. This paper presents a new and easy way to detect faults based on the use of a fault dictionary and machine learning. The dictionary was built starting from fault signatures consisting of images obtained from the signals available in the system. Subsequently, a convolutional neural network was trained to recognize such fault signature images. The objective of this study was to develop a fault dictionary and a classifier to recognize the most frequent soft electrical faults that affect position sensors and actuators. The proposed method permits, in a computationally convenient way that can be implemented in real time, the determination of which component has failed and what kind of failure has occurred. Therefore, this fault identification system allows determining which countermeasure to adopt in order to enhance the reliability of the system. The performance of this method was assessed by means of a case study concerning a real turbomachine supported by two active magnetic bearings for the oil and gas field. Seventeen fault classes were considered, and the neural network fault classifier reached an accuracy of 93% on the test dataset.

5.
Sensors (Basel) ; 23(11)2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37299787

RESUMEN

The safety of an operator working in a hazardous environment is a recurring topic in the technical literature of recent years, especially for high-risk environments such as oil and gas plants, refineries, gas depots, or chemical industries. One of the highest risk factors is constituted by the presence of gaseous substances such as toxic compounds such as carbon monoxide and nitric oxides, particulate matter or indoors, in closed spaces, low oxygen concentration atmospheres, and high concentrations of CO2 that can represent a risk for human health. In this context, there exist many monitoring systems for lots of specific applications where gas detection is required. In this paper, the authors present a distributed sensing system based on commercial sensors aimed at monitoring the presence of toxic compounds generated by a melting furnace with the aim of reliably detecting the insurgence of dangerous conditions for workers. The system is composed of two different sensor nodes and a gas analyzer, and it exploits commercial low-cost commercially available sensors.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Monitoreo del Ambiente , Contaminación del Aire/análisis , Material Particulado/análisis , Monóxido de Carbono/análisis , Gases/análisis , Lugar de Trabajo , Contaminantes Atmosféricos/análisis
6.
Sensors (Basel) ; 23(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36991976

RESUMEN

The response of resistive In2O3-x sensing devices was investigated as a function of the NO2 concentration in different operative conditions. Sensing layers are 150 nm thick films manufactured by oxygen-free room temperature magnetron sputtering deposition. This technique allows for a facile and fast manufacturing process, at same time providing advantages in terms of gas sensing performances. The oxygen deficiency during growth provides high densities of oxygen vacancies, both on the surface, where they are favoring NO2 absorption reactions, and in the bulk, where they act as donors. This n-type doping allows for conveniently lowering the thin film resistivity, thus avoiding the sophisticated electronic readout required in the case of very high resistance sensing layers. The semiconductor layer was characterized in terms of morphology, composition and electronic properties. The sensor baseline resistance is in the order of kilohms and exhibits remarkable performances with respect to gas sensitivity. The sensor response to NO2 was studied experimentally both in oxygen-rich and oxygen-free atmospheres for different NO2 concentrations and working temperatures. Experimental tests revealed a response of 32%/ppm at 10 ppm NO2 and response times of approximately 2 min at an optimal working temperature of 200 °C. The obtained performance is in line with the requirements of a realistic application scenario, such as in plant condition monitoring.

7.
Micromachines (Basel) ; 14(2)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36838075

RESUMEN

In the field of vibration monitoring and control, the use of low-cost multicomponent MEMS-based accelerometer sensors is nowadays increasingly widespread. Such sensors allow implementing lightweight monitoring systems with low management costs, low power consumption and a small size. However, for the monitoring systems to provide trustworthy and meaningful data, the high accuracy and reliability of sensors are essential requirements. Consequently, a metrological approach to the calibration of multi-component accelerometer sensors, including appropriate uncertainty evaluations, are necessary to guarantee traceability and reliability in the frequency domain of data provided, which nowadays is not fully available. In addition, recently developed metrological characterizations at the microscale level allow to provide detailed and accurate quantification of the enhanced technical performance and the responsiveness of these sensors. In this paper, a dynamic calibration procedure is applied to provide the sensitivity parameters of a low-cost, multicomponent MEMS sensor accelerometer prototype (MDUT), designed, developed and realized at the University of Siena, conceived for rolling bearings vibration monitoring in a broad frequency domain (from 10 Hz up to 25 kHz). The calibration and the metrological characterization of the MDUT are carried out by comparison to a reference standard transducer, at the Primary Vibration Laboratory of the National Institute of Metrological Research (INRiM).

8.
Sensors (Basel) ; 22(24)2022 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-36560163

RESUMEN

In this paper, an IoT sensor node, based on smart Bluetooth low energy (BLE), for the health monitoring of artworks and large wooden structures is presented. The measurements from sensors on board the node are collected in real-time and sent to a remote gateway. The sensor node allows for the monitoring of environmental parameters, in particular, temperature and humidity, with accurate and robust integrated sensors. The developed node also embeds an accelerometer, which also allows other mechanical quantities (such as tilt) to be derived. This feature can be exploited to perform structural monitoring, exploiting the processing of data history to detect permanent displacements or deformations. The node is triggered by acceleration transients; therefore, it can also generate alarms related to shocks. This feature is crucial, for instance, in the case of transportation. The developed device is low-cost and has very good performance in terms of power consumption and compactness. A reliability assessment showed excellent durability, and experimental tests proved very satisfactory robustness against working condition variations. The presented results confirm that the developed device allows for the realization of pervasive monitoring systems, in the context of the IoT paradigm, with sensor nodes devoted to the monitoring of each artwork present in a museum or in a church.


Asunto(s)
Aceleración , Museos , Reproducibilidad de los Resultados , Humedad , Temperatura
9.
Sensors (Basel) ; 22(15)2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35957285

RESUMEN

In this paper, an FPGA (Field Programmable Gate Array)-based digital architecture for the measurement of quartz crystal microbalance (QCM) oscillating frequency of transient responses, i.e., in QCM-D (QCM and Dissipation) applications, is presented. The measurement system is conceived for operations in liquid, with short QCM transient responses due to the large mechanical load. The proposed solution allows for avoiding the complex processing systems typically required by the QCM-D techniques and grants frequency resolutions better than 1 ppm. The core of the architecture is a reciprocal digital frequency meter, combined with the preprocessing of the QCM signal through mixing operations, such as a step-down of the input frequency and reducing the measurement error. The measurement error is further reduced through averaging. Different strategies are proposed to implement the proposed measurement solution, comprising an all-digital circuit and mixed analog/digital ones. The performance of the proposed architectures is theoretically derived, compared, and analyzed by means of experimental data obtained considering 10 MHz QCMs and 200 µs long transient responses. A frequency resolution of about 240 ppb, which corresponds to a Sauerbrey mass resolution of 8 ng/cm2, is obtained for the all-digital solution, whereas for the mixed solution the resolution halves to 120 ppb, with a measurement time of about one second over 100 repetitions.


Asunto(s)
Técnicas Biosensibles , Tecnicas de Microbalanza del Cristal de Cuarzo , Técnicas Biosensibles/métodos , Cuarzo/química
10.
Vaccines (Basel) ; 10(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35214630

RESUMEN

BACKGROUND: We have designed a prospective study aiming to monitor the immune response in 178 health care workers six months after BNT162b2 mRNA vaccination. METHODS: The humoral immune response of all subjects was evaluated by chemiluminescence (CMIA); in 60 serum samples, a live virus-based neutralization assay was also tested. Moreover, 6 months after vaccination, B- and T-cell subsets from 20 subjects were observed by FACS analysis after restimulation with the trimeric SARS-CoV-2 Spike protein as an antigen, thus mimicking reinfection in vitro. RESULTS: A significant decrease of circulating IgG levels and neutralizing antibodies over time were observed. Moreover, six months after vaccination, a variable T-cell immune response after in vitro antigen stimulation of PBMC was observed. On the contrary, the analysis of B-cell response showed a shift from unswitched to switched memory B-cells and an increase of Th17 cells. CONCLUSIONS: Although the variability of the CD4+ and CD8+ immune response and an antibody decline was observed among vaccinated subjects, the increase of switched memory B-cells and Th17 cells, correlating with the presence of neutralizing antibodies, opened the debate on the correct timing of vaccination.

11.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34696157

RESUMEN

This paper aims to thoroughly investigate the potential of ion current measurements in the context of combustion process monitoring in gas turbines. The study is targeted at characterizing the dynamic behavior of a typical ion-current measurement system based on a spark-plug. Starting from the preliminary study published in a previous work, the authors propose a refined model of the electrode (spark plug), based on the Langmuir probe theory, that incorporates the physical surface effects and proposes an optimized design of the conditioning electronics, which exploits a low frequency AC square wave biasing of the electrodes and allows for compensating some relevant parasitic effects. The authors present experimental results obtained in the laboratory, which allow for the evaluation of the validity of the model and the interpreting of the characteristics of the measurement signal. Finally, measurements carried out in the field on an industrial combustor are presented. The results confirm that the charged chemical species density sensed by the proposed measurement system and related to the mean value of the output signal is an indicator of the 'average' combustion process conditions in terms e.g., of air/fuel ratio, whereas the high frequency spectral component of the measured signal can give information related to the turbulent regime and to the presence of pressure pulsations. Results obtained with a prototype system demonstrated an achievable resolution of about 5 Pa on the estimated amplitude, even under small biasing voltage (22.5 V) and an estimated bandwidth of 10 kHz.

12.
Sensors (Basel) ; 21(14)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34300463

RESUMEN

This work proposes a model describing the dynamic behavior of sensing films based on functionalized MWCNT networks in terms of conductivity when exposed to time-variable concentrations of NO2 and operating with variable working temperatures. To test the proposed model, disordered networks of MWCNTs functionalized with COOH and Au nanoparticles were exploited. The model is derived from theoretical descriptions of the electronic transport in the nanotube network, of the NO2 chemisorption reaction and of the interaction of these two phenomena. The model is numerically implemented and then identified by estimating all the chemical/physical quantities involved and acting as parameters, through a model fitting procedure. Satisfactory results were obtained in the fitting process, and the identified model was used to further the analysis of the MWCNT sensing in dynamical conditions.

13.
Sensors (Basel) ; 21(3)2021 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-33498354

RESUMEN

In this paper, a novel measurement system based on Quartz Crystal Microbalances is presented. The proposed solution was conceived specifically to overcome the measurement problems related to Quartz Crystal Microbalance (QCM) applications in dielectric liquids where the Q-factor of the resonant system is severely reduced with respect to in-gas applications. The QCM is placed in a Meacham oscillator embedding an amplifier with adjustable gain, an automatic strategy for gain tuning allows for maintaining the oscillator frequency close to the series resonance frequency of the quartz, which is related in a simple way with the physical parameters of interest. The proposed system can be used to monitor simultaneously both the series resonant frequency and the equivalent electromechanical resistance of the quartz. The feasibility and the performance of the proposed method are proven by means of measurements obtained with a prototype based on a 10-MHz AT-cut quartz.

14.
J Enzyme Inhib Med Chem ; 36(1): 394-401, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33430654

RESUMEN

In this paper, the efficiency of the carbonic anhydrase (CA) enzyme in accelerating the hydration of CO2 is evaluated using a measurement system which consists of a vessel in which a gaseous flow of mixtures of nitrogen and CO2 is bubbled into water or water solutions containing a known quantity of CA enzyme. The pH value of the solution and the CO2 concentration at the measurement system gas exhaust are continuously monitored. The measured CO2 level allows for assessing the quantity of CO2, which, subtracted from the gaseous phase, is dissolved into the liquid phase and/or hydrated to bicarbonate. The measurement procedure consists of inducing a transient and observing and modelling the different kinetics involved in the steady-state recovery with and without CA. The main contribution of this work is exploiting dynamical system theory and chemical kinetics modelling for interpreting measurement results for characterising the activity of CA enzymes. The data for model fitting are obtained from a standard bioreactor, in principle equal to standard two-phase bioreactors described in the literature, in which two different techniques can be used to move the process itself away from the steady-state, inducing transients.


Asunto(s)
Dióxido de Carbono/metabolismo , Anhidrasas Carbónicas/metabolismo , Modelos Químicos , Reactores Biológicos , Dióxido de Carbono/química , Anhidrasas Carbónicas/química , Concentración de Iones de Hidrógeno , Cinética
15.
Trop Med Infect Dis ; 5(4)2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33322463

RESUMEN

Background: Periprosthetic joint infection (PJI) represents 25% of failed total knee arthroplasties (TKA). The European Knee Associates (EKA) formed a transatlantic panel of experts to perform a literature review examining patient-related risk factors with the objective of producing perioperative recommendations in PJI high-risk patients. Methods: Multiple databases (Pubmed/MEDLINE, EMBASE, Scopus, Cochrane Library) and recommendations on TKA PJI prevention measures from the International Consensus Meetings on PJI from the AAOS and AAHKS were reviewed. This represents a Level IV study. Results: Strong evidence was found on poor glycemic control, obesity, malnutrition, and smoking being all associated with increased rates of PJI. In the preoperative period, patient optimization is key: BMI < 35, diet optimization, Hemoglobin A1c < 7.5, Fructosamine < 292 mmol/L, smoking cessation, and MRSA nasal screening all showed strong evidence on reducing PJI risk. Intraoperatively, a weight-based antibiotic prophylaxis, accurate fluid resuscitation, betadine and chlorhexidine dual skin preparation, diluted povidone iodine solution irrigation, tranexamic acid administration, and monofilament barbed triclosan-coated sutures for soft tissues closure all represented effective prevention measures. In the postoperative period, failure to reach normalization of ESR, CRP, D-dimer, and IL-6 six weeks postoperatively suggested early PJI. Conclusion: The current recommendations from this group of experts, based on published evidence, support risk stratification to identify high-risk patients requiring implementation of perioperative measures to reduce postoperative PJI.

16.
Sensors (Basel) ; 20(24)2020 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-33348623

RESUMEN

Here, we propose a novel application of a low-cost robust gravimetric system for public place access monitoring purposes. The proposed solution is intended to be exploited in a multi-sensor scenario, where heterogeneous information, coming from different sources (e.g., metal detectors and surveillance cameras), are collected in a central data fusion unit to obtain a more detailed and accurate evaluation of notable events. Specifically, the word "notable" refers essentially to two event categories: the first category is represented by irregular events, corresponding typically to multiple people passing together through a security gate; the second category includes some event subsets, whose notification can be interesting for assistance provision (in the case of people with disabilities), or for statistical analysis. The employed gravimetric sensor, compared to other devices existing in the literature, exhibits a simple scalable robust structure, made up of an array of rigid steel plates, each laid on four load cells. We developed a tailored hardware and software to individually acquire the load cell signals, and to post-process the data to formulate a classification of the notable events. The results are encouraging, showing a remarkable detectability of irregularities (95.3% of all the test cases) and a satisfactory identification of the other event types.

17.
Sensors (Basel) ; 20(17)2020 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-32825683

RESUMEN

In this paper, NO2 sensing by means of single-wall carbon nanotubes (SWCNT) networks, decorated with nanoparticles of TiO2 and Au, is proposed. In particular, it is shown that the performance of these materials can be enhanced using pulsed temperature mode. This sensing strategy effectiveness is theoretically and experimentally assessed. In this paper, in fact, a dynamic model for conductive gas sensors formed by networks of nanowires, considering the junctions between different wires as the main contribution to sensor conductance, and in the presence of the target gas, is presented and validated. The model accounts for variable temperature and gas concentration and sheds some light on the mechanisms leading to the sensor response improvement related to temperature pulsed working mode. It is also shown how the addition of a different material can be modeled through different surface adsorption kinetics.

18.
Sensors (Basel) ; 20(1)2019 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-31861429

RESUMEN

The aim of this work is to investigate the gas sensing performance of single wall carbon nanotubes (SWCNTs)-based conductive sensors operating at low-medium temperatures (<250 °C). The investigated sensing films consists of an SWCNT network obtained by drop-casting a SWCNT suspension. Starting from this base preparation, different sensing devices were obtained by decorating the SWCNT network with materials suitable for enhancing the sensitivity toward the target gas. In particular, in this paper, nano-particles of gold and of TiO2 were used. In the paper, the performance of the different sensing devices, in terms of response time, sensitivity toward NO2 and cross-sensitivity to O2, CO and water vapor, were assessed and discussed. Sensors based on decorated SWCNT films showed high performance; in particular, the decoration with Au nano-particles allows for a large enhancement of sensitivity (reaching 10%/1 ppm at 240 °C) and a large reduction of response time. On the other hand, the addition of TiO2 nanoparticles leads to a satisfactory improvement of the sensitivity as well as a significant reduction of the response time at moderate temperatures (down to 200 °C). Finally, the suitability of using Au decorated SWCNTs-based sensors for room temperature sensing is demonstrated.

19.
Sensors (Basel) ; 19(4)2019 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-30781799

RESUMEN

In this paper, the gas sensing properties of metal oxide nano-powder composites are studied and modeled. The gas sensing properties of mixtures of two different metal oxide nanoparticles, prepared via low-cost routes, are investigated. The responses to both an oxidizing (NO2) and a reducing gas (CO) are analyzed. The tested composites are obtained by mixing a different percentage of a p-type metal oxide, Co3O4, with moderate responses to NO2 at about 200 °C and to CO at high temperature (above 260 °C), with n-type Al-doped ZnO, which is characterized by a large but unstable response towards NO2 around 160 °C and a moderate response towards CO around 200 °C. In the oxides mixtures, p-n heterojunctions are formed by the juxtaposition of an n-type and a p-type grain in contact. Consequently, the electronic conductivity is modified and the obtained composite materials show novel characteristics with respect to the base materials. This indicates that predicting the behavior of the composites from those of their components is not possible and it suggests that the hetero-junction behavior has to be studied to understand the sensing properties of the composite materials. The obtained results indicate that the composites containing a significant amount of hetero-junctions exhibit a stable response to NO2 at room temperature and significant responses towards CO at 160 °C.

20.
Sensors (Basel) ; 18(12)2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30551626

RESUMEN

Nanostructured Indium(III) oxide (In2O3) films deposited by low temperature pulsed electron deposition (LPED) technique on customized alumina printed circuit boards have been manufactured and characterized as gas sensing devices. Their electrical properties have monitored directly during deposition to optimize their sensing performance. Experimental results with oxidizing (NO2) as well as reducing (CO) gases in both air and inert gas carriers are discussed and modeled.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...