Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 634: 1486-1504, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-29710647

RESUMEN

This paper describes an agricultural model (Roth-CNP) that estimates carbon (C), nitrogen (N) and phosphorus (P) pools, pool changes, their balance and the nutrient fluxes exported from arable and grassland systems in the UK during 1800-2010. The Roth-CNP model was developed as part of an Integrated Model (IM) to simulate C, N and P cycling for the whole of UK, by loosely coupling terrestrial, hydrological and hydro-chemical models. The model was calibrated and tested using long term experiment (LTE) data from Broadbalk (1843) and Park Grass (1856) at Rothamsted. We estimated C, N and P balance and their fluxes exported from arable and grassland systems on a 5km×5km grid across the whole of UK by using the area of arable of crops and livestock numbers in each grid and their management. The model estimated crop and grass yields, soil organic carbon (SOC) stocks and nutrient fluxes in the form of NH4-N, NO3-N and PO4-P. The simulated crop yields were compared to that reported by national agricultural statistics for the historical to the current period. Overall, arable land in the UK have lost SOC by -0.18, -0.25 and -0.08MgCha-1y-1 whereas land under improved grassland SOC stock has increased by 0.20, 0.47 and 0.24MgCha-1y-1 during 1800-1950, 1950-1970 and 1970-2010 simulated in this study. Simulated N loss (by leaching, runoff, soil erosion and denitrification) increased both under arable (-15, -18 and -53kgNha-1y-1) and grass (-18, -22 and -36kgNha-1y-1) during different time periods. Simulated P surplus increased from 2.6, 10.8 and 18.1kgPha-1y-1 under arable and 2.8, 11.3 and 3.6kgPha-1y-1 under grass lands 1800-1950, 1950-1970 and 1970-2010.

2.
Sci Total Environ ; 609: 1483-1499, 2017 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-28800691

RESUMEN

We describe a model framework that simulates spatial and temporal interactions in agricultural landscapes and that can be used to explore trade-offs between production and environment so helping to determine solutions to the problems of sustainable food production. Here we focus on models of agricultural production, water movement and nutrient flow in a landscape. We validate these models against data from two long-term experiments, (the first a continuous wheat experiment and the other a permanent grass-land experiment) and an experiment where water and nutrient flow are measured from isolated catchments. The model simulated wheat yield (RMSE 20.3-28.6%), grain N (RMSE 21.3-42.5%) and P (RMSE 20.2-29% excluding the nil N plots), and total soil organic carbon particularly well (RMSE3.1-13.8%), the simulations of water flow were also reasonable (RMSE 180.36 and 226.02%). We illustrate the use of our model framework to explore trade-offs between production and nutrient losses.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...