Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Immunology ; 168(1): 83-95, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36054607

RESUMEN

Integrin-mediated T-cell adhesion and migration is a crucial step in immune response and autoimmune diseases. However, the underlying signalling mechanisms are not fully elucidated. In this study, we examined the implication of purinergic signalling, which has been associated with T-cell activation, in the adhesion and migration of human Th17 cells across fibronectin, a major matrix protein associated with inflammatory diseases. We showed that the adhesion of human Th17 cells to fibronectin induces, via ß1 integrin, a sustained release of adenosine triphosphate (ATP) from the mitochondria through the pannexin-1 hemichannels. Inhibition of ATP release or its degradation with apyrase impaired the capacity of the cells to attach and migrate across fibronectin. Inhibition studies identified a major role for the purinergic receptor P2X4 in T-cell adhesion and migration but not for P2X7 or P2Y11 receptors. Blockade of P2X4 but not P2X7 or P2Y11 receptors reduced cell adhesion and migration by inhibiting activation of ß1 integrins, which is essential for ligand binding. Furthermore, we found that ß1 integrin-induced ATP release, P2X4 receptor transactivation, cell adhesion and migration were dependent on the focal adhesion kinase Pyk2 but not FAK. Finally, P2X4 receptor inhibition also blocked fibronectin-induced Pyk2 activation suggesting the existence of a positive feedback loop of activation between ß1 integrin/Pyk2 and P2X4 purinergic signalling pathways. Our findings uncovered an unrecognized link between ß1 integrin and P2X4 receptor signalling pathways for promoting T-cell adhesion and migration across the extracellular matrix.


Asunto(s)
Fibronectinas , Integrina beta1 , Humanos , Integrina beta1/metabolismo , Fibronectinas/metabolismo , Quinasa 2 de Adhesión Focal/metabolismo , Receptores Purinérgicos P2X4 , Células Th17 , Adhesión Celular , Adenosina Trifosfato/metabolismo
2.
Blood ; 132(19): 2067-2077, 2018 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-30213874

RESUMEN

The ephrin transmembrane receptor family of tyrosine kinases is involved in platelet function. We report the first EPHB2 variant affecting platelets in 2 siblings (P1 and P2) from a consanguineous family with recurrent bleeding and normal platelet counts. Whole-exome sequencing identified a c.2233C>T variant (missense p.R745C) of the EPHB2 gene. P1 and P2 were homozygous for this variant, while their asymptomatic parents were heterozygous. The p.R745C variant within the tyrosine kinase domain was associated with defects in platelet aggregation, αIIbß3 activation, and granule secretion induced by G-protein-coupled receptor (GPCR) agonists and convulxin, as well as in thrombus formation on collagen under flow. In contrast, clot retraction, flow-dependent platelet adhesion, and spreading on fibrinogen were only mildly affected, indicating limited effects on αIIbß3 outside-in signaling. Most importantly, Lyn, Syk, and FcRγ phosphorylation, the initial steps in glycoprotein VI (GPVI) platelet signaling were drastically impaired in the absence of platelet-platelet contact, indicating a positive role for EPHB2 in GPVI activation. Likewise platelet activation by PAR4-AP showed defective Src activation, as opposed to normal protein kinase C activity and Ca2+ mobilization. Overexpression of wild-type and R745C EPHB2 variant in RBL-2H3 (rat basophilic leukemia) cells stably expressing human GPVI confirmed that EPHB2 R745C mutation impaired EPHB2 autophosphorylation but had no effect on ephrin ligand-induced EPHB2 clustering, suggesting it did not interfere with EPHB2-ephrin-mediated cell-to-cell contact. In conclusion, this novel inherited platelet disorder affecting EPHB2 demonstrates this tyrosine kinase receptor plays an important role in platelet function through crosstalk with GPVI and GPCR signaling.


Asunto(s)
Plaquetas/patología , Mutación Missense , Activación Plaquetaria , Receptor EphB2/genética , Adolescente , Plaquetas/metabolismo , Plaquetas/ultraestructura , Niño , Femenino , Humanos , Masculino , Linaje , Adhesividad Plaquetaria , Agregación Plaquetaria , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Receptor EphB2/metabolismo , Transducción de Señal , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...