Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Transl Med ; 13(12): e1516, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38148640

RESUMEN

BACKGROUND: Cancer-associated fibroblasts (CAFs), integral to the tumour microenvironment, are pivotal in cancer progression, exhibiting either pro-tumourigenic or anti-tumourigenic functions. Their inherent phenotypic and functional diversity allows for the subdivision of CAFs into various subpopulations. While several classification systems have been suggested for different cancer types, a unified molecular classification of CAFs on a single-cell pan-cancer scale has yet to be established. METHODS: We employed a comprehensive single-cell transcriptomic atlas encompassing 12 solid tumour types. Our objective was to establish a novel molecular classification and to elucidate the evolutionary trajectories of CAFs. We investigated the functional profiles of each CAF subtype using Single-Cell Regulatory Network Inference and Clustering and single-cell gene set enrichment analysis. The clinical relevance of these subtypes was assessed through survival curve analysis. Concurrently, we employed multiplex immunofluorescence staining on tumour tissues to determine the dynamic changes of CAF subtypes across different tumour stages. Additionally, we identified the small molecule procyanidin C1 (PCC1) as a target for matrix-producing CAF (matCAF) using molecular docking techniques and further validated these findings through in vitro and in vivo experiments. RESULTS: In our investigation of solid tumours, we identified four molecular clusters of CAFs: progenitor CAF (proCAF), inflammatory CAF (iCAF), myofibroblastic CAF (myCAF) and matCAF, each characterised by distinct molecular traits. This classification was consistently applicable across all nine studied solid tumour types. These CAF subtypes displayed unique evolutionary pathways, functional roles and clinical relevance in various solid tumours. Notably, the matCAF subtype was associated with poorer prognoses in several cancer types. The targeting of matCAF using the identified small molecule, PCC1, demonstrated promising antitumour activity. CONCLUSIONS: Collectively, the various subtypes of CAFs, particularly matCAF, are crucial in the initiation and progression of cancer. Focusing therapeutic strategies on targeting matCAF in solid tumours holds significant potential for cancer treatment.


Asunto(s)
Fibroblastos Asociados al Cáncer , Neoplasias , Humanos , Fibroblastos Asociados al Cáncer/metabolismo , Simulación del Acoplamiento Molecular , Neoplasias/patología , Perfilación de la Expresión Génica , Transcriptoma/genética , Microambiente Tumoral/genética
2.
Int J Cancer ; 152(4): 558-571, 2023 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35983734

RESUMEN

Accumulating evidence has underscored the importance of the Hippo-YAP1 signaling in lung tissue homeostasis, whereas its deregulation induces tumorigenesis. YAP1 and its paralog TAZ are the key downstream effectors tightly controlled by the Hippo pathway. YAP1/TAZ exerts oncogenic activities by transcriptional regulation via physical interaction with TEAD transcription factors. In solid tumors, Hippo-YAP1 crosstalks with other signaling pathways such as Wnt/ß-catenin, receptor tyrosine kinase cascade, Notch and TGF-ß to synergistically drive tumorigenesis. As YAP1/TAZ expression is significantly correlated with unfavorable outcomes for the patients, small molecules have been developed for targeting YAP1/TAZ to get a therapeutic effect. In this review, we summarize the recent findings on the deregulation of Hippo-YAP1 pathway in nonsmall cell lung carcinoma, discuss the molecular mechanisms of its dysregulation in leading to tumorigenesis, explore the therapeutic strategies for targeting YAP1/TAZ, and provide the research directions for deep investigation. We believe that detailed delineation of Hippo-YAP1 regulation in tumorigenesis provides novel insight for accurate therapeutic intervention.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Carcinoma , Neoplasias Pulmonares , Humanos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transactivadores/metabolismo , Proteínas Señalizadoras YAP , Medicina de Precisión , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinogénesis/genética , Carcinogénesis/metabolismo , Neoplasias Pulmonares/genética , Pulmón/metabolismo
3.
Biomedicines ; 10(10)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36289774

RESUMEN

The Hippo pathway is an evolutionally conserved signaling cascade that controls organ size and tissue regeneration under physiological conditions, and its aberrations have been well studied to promote tumor initiation and progression. Dysregulation of the Hippo tumor suppressor signaling frequently occurs in gastric cancer (GC) and other solid tumors and contributes to cancer development through modulating multiple aspects, including cell proliferation, survival, metastasis, and oncotherapy resistance. In the clinic, Hippo components also possess diagnostic and prognostic values for cancer patients. Considering its crucial role in driving tumorigenesis, targeting the Hippo pathway may greatly benefit developing novel cancer therapies. This review summarizes the current research progress regarding the core components and regulation of the Hippo pathway, as well as the mechanism and functional roles of their dysregulation in gastrointestinal malignancies, especially in GC, and discusses the therapeutic potential of targeting the Hippo pathway against cancers.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...