Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Radiat Res ; 200(6): 593-600, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37967581

RESUMEN

The risk of exposure to high levels of ionizing radiation from nuclear weapons or radiological accidents is an increasing world concern. Partial- or total-body exposure to high doses of radiation is potentially lethal through the induction of acute radiation syndrome (ARS). Hematopoietic cells are sensitive to radiation exposure; white blood cells primarily undergo apoptosis while red blood cells (RBCs) undergo hemolysis. Several laboratories demonstrated that the rapid hemolysis of RBCs results in the release of acellular iron into the blood. We recently demonstrated using a murine model of ARS after total-body irradiation (TBI) and the loss of RBCs, iron accumulated in the bone marrow and spleen, notably between 4-21 days postirradiation. Here, we investigated iron accumulation in the bone marrow and spleens from TBI nonhuman primates (NHPs) using histological stains. We observed trends in increased intracellular and extracellular brown pigmentation in the bone marrow after various doses of radiation, especially after 4-15 days postirradiation, but these differences did not reach significance. We observed a significant increase in Prussian blue-staining intracellular iron deposition in the spleen 13-15 days after 5.8-8.5 Gy of TBI. We observed trends of increased iron in the spleen after 30-60 days postirradiation, with varying doses of radiation, but these differences did not reach significance. The NHP model of ARS confirms our earlier findings in the murine model, showing iron deposition in the bone marrow and spleen after TBI.


Asunto(s)
Síndrome de Radiación Aguda , Médula Ósea , Ratones , Animales , Médula Ósea/efectos de la radiación , Síndrome de Radiación Aguda/patología , Modelos Animales de Enfermedad , Bazo/patología , Hemólisis , Irradiación Corporal Total/efectos adversos , Hierro , Primates
2.
Clin Case Rep ; 11(7): e7507, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37397583

RESUMEN

Key Clinical Message: When managing patients with differentiated thyroid cancers (DTC) and lytic bone lesions, physicians should consider etiologies other than DTC bony metastases when there is no biochemical and functional radiographic evidence of extensive DTC burden. Abstract: Systemic mastocytosis (SM) is a clonal expansion of mast cells associated with an increased risk of solid malignancies. There is no known association between systemic mastocytosis and thyroid cancer. We report a young woman who presented with cervical lymphadenopathy, palpable thyroid nodule, and lytic bone lesions who was diagnosed with papillary thyroid cancer (PTC). The patient's post-surgical thyroglobulin was lower than expected for metastatic thyroid cancer, and the lytic bone lesions did not demonstrate uptake of I123. Upon further evaluation, the patient was found to have SM. We report a case of co-occurrence of PTC and SM.

3.
Int J Mol Sci ; 23(19)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36232330

RESUMEN

Total body irradiation (TBI) can result in death associated with hematopoietic insufficiency. Although radiation causes apoptosis of white blood cells, red blood cells (RBC) undergo hemolysis due to hemoglobin denaturation. RBC lysis post-irradiation results in the release of iron into the plasma, producing a secondary toxic event. We investigated radiation-induced iron in the spleens of mice following TBI and the effects of the radiation mitigator captopril. RBC and hematocrit were reduced ~7 days (nadir ~14 days) post-TBI. Prussian blue staining revealed increased splenic Fe3+ and altered expression of iron binding and transport proteins, determined by qPCR, western blotting, and immunohistochemistry. Captopril did not affect iron deposition in the spleen or modulate iron-binding proteins. Caspase-3 was activated after ~7-14 days, indicating apoptosis had occurred. We also identified markers of iron-dependent apoptosis known as ferroptosis. The p21/Waf1 accelerated senescence marker was not upregulated. Macrophage inflammation is an effect of TBI. We investigated the effects of radiation and Fe3+ on the J774A.1 murine macrophage cell line. Radiation induced p21/Waf1 and ferritin, but not caspase-3, after ~24 h. Radiation ± iron upregulated several markers of pro-inflammatory M1 polarization; radiation with iron also upregulated a marker of anti-inflammatory M2 polarization. Our data indicate that following TBI, iron accumulates in the spleen where it regulates iron-binding proteins and triggers apoptosis and possible ferroptosis.


Asunto(s)
Síndrome de Radiación Aguda , Ferroptosis , Animales , Antiinflamatorios , Captopril , Modelos Animales de Enfermedad , Ferritinas , Hierro/metabolismo , Ratones , Bazo/metabolismo
5.
Curr Oncol ; 28(6): 5124-5147, 2021 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-34940069

RESUMEN

CD5-negative, CD10-negative low-grade B-cell lymphoproliferative disorders (CD5-CD10-LPD) of the spleen comprise a fascinating group of indolent, neoplastic, mature B-cell proliferations that are essential to accurately identify but can be difficult to diagnose. They comprise the majority of B-cell LPDs primary to the spleen, commonly presenting with splenomegaly and co-involvement of peripheral blood and bone marrow, but with little to no involvement of lymph nodes. Splenic marginal zone lymphoma is one of the prototypical, best studied, and most frequently encountered CD5-CD10-LPD of the spleen and typically involves white pulp. In contrast, hairy cell leukemia, another well-studied CD5-CD10-LPD of the spleen, involves red pulp, as do the two less common entities comprising so-called splenic B-cell lymphoma/leukemia unclassifiable: splenic diffuse red pulp small B-cell lymphoma and hairy cell leukemia variant. Although not always encountered in the spleen, lymphoplasmacytic lymphoma, a B-cell lymphoproliferative disorder consisting of a dual population of both clonal B-cells and plasma cells and the frequent presence of the MYD88 L265P mutation, is another CD5-CD10-LPD that can be seen in the spleen. Distinction of these different entities is possible through careful evaluation of morphologic, immunophenotypic, cytogenetic, and molecular features, as well as peripheral blood and bone marrow specimens. A firm understanding of this group of low-grade B-cell lymphoproliferative disorders is necessary for accurate diagnosis leading to optimal patient management.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Trastornos Linfoproliferativos , Linfocitos B/patología , Humanos , Inmunofenotipificación , Trastornos Linfoproliferativos/diagnóstico , Trastornos Linfoproliferativos/genética , Trastornos Linfoproliferativos/patología , Bazo/patología
6.
PLoS One ; 16(8): e0256208, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34449797

RESUMEN

Our laboratory has demonstrated that captopril, an angiotensin converting enzyme inhibitor, mitigates hematopoietic injury following total body irradiation in mice. Improved survival in mice is correlated with improved recovery of mature blood cells and bone marrow, reduction of radiation-induced inflammation, and suppression of radiation coagulopathy. Here we investigated the effects of captopril treatment against radiation injuries in the Göttingen mini pig model of Hematopoietic-Acute Radiation Syndrome (H-ARS). Minipigs were given captopril orally (0.96 mg/kg) twice daily for 12 days following total body irradiation (60Co 1.79 Gy, 0.42-0.48 Gy/min). Blood was drawn over a time course following irradiation, and tissue samples were collected at euthanasia (32-35 days post-irradiation). We observed improved survival with captopril treatment, with survival rates of 62.5% in vehicle treated and 87.5% in captopril treated group. Additionally, captopril significantly improved recovery of peripheral blood mononuclear cells, and a trend toward improvement in recovery of red blood cells and platelets. Captopril significantly reduced radiation-induced expression of cytokines erythropoietin and granulocyte-macrophage colony-stimulating factor and suppressed radiation-induced acute-phase inflammatory response cytokine serum amyloid protein A. Using quantitative-RT-PCR to monitor bone marrow recovery, we observed significant suppression of radiation-induced expression of redox stress genes and improved hematopoietic cytokine expression. Our findings suggest that captopril activities in the Göttingen minipig model of hematopoietic-acute radiation syndrome reflect findings in the murine model.


Asunto(s)
Síndrome de Radiación Aguda/tratamiento farmacológico , Captopril/farmacología , Sistema Hematopoyético/efectos de los fármacos , Traumatismos Experimentales por Radiación/tratamiento farmacológico , Síndrome de Radiación Aguda/patología , Animales , Modelos Animales de Enfermedad , Eritropoyetina/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Factor Estimulante de Colonias de Granulocitos y Macrófagos/genética , Sistema Hematopoyético/lesiones , Sistema Hematopoyético/patología , Sistema Hematopoyético/efectos de la radiación , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/efectos de la radiación , Ratones , Oxidación-Reducción/efectos de los fármacos , Traumatismos Experimentales por Radiación/patología , Porcinos , Porcinos Enanos , Irradiación Corporal Total/efectos adversos
7.
Acad Pathol ; 7: 2374289520935587, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733990

RESUMEN

The following fictional case is intended as a learning tool within the Pathology Competencies for Medical Education (PCME), a set of national standards for teaching pathology. These are divided into three basic competencies: Disease Mechanisms and Processes, Organ System Pathology, and Diagnostic Medicine and Therapeutic Pathology. For additional information, and a full list of learning objectives for all three competencies, see http://journals.sagepub.com/doi/10.1177/2374289517715040. 1.

8.
Exp Hematol ; 84: 54-66, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32240658

RESUMEN

Exposure to high-dose total body irradiation (TBI) can result in hematopoietic acute radiation syndrome (H-ARS), characterized by leukopenia, anemia, and coagulopathy. Death from H-ARS occurs from hematopoietic insufficiency and opportunistic infections. Following radiation exposure, red blood cells (RBCs) undergo hemolysis from radiation-induced hemoglobin denaturation, causing the release of iron. Free iron can have multiple detrimental biological effects, including suppression of hematopoiesis. We investigated the impact of radiation-induced iron release on the bone marrow following TBI and the potential impact of the ACE inhibitor captopril, which improves survival from H-ARS. C57BL/6J mice were exposed to 7.9 Gy, 60Co irradiation, 0.6 Gy/min (LD70-90/30). RBCs and reticulocytes were significantly reduced within 7 days of TBI, with the RBC nadir at 14-21 days. Iron accumulation in the bone marrow correlated with the time course of RBC hemolysis, with an ∼10-fold increase in bone marrow iron at 14-21 days post-irradiation, primarily within the cytoplasm of macrophages. Iron accumulation in the bone marrow was associated with increased expression of genes for iron binding and transport proteins, including transferrin, transferrin receptor 1, ferroportin, and integrin αMß2. Expression of the gene encoding Nrf2, a transcription factor activated by oxidative stress, also increased at 21 days post-irradiation. Captopril did not alter iron accumulation in the bone marrow or expression of iron storage genes, but did suppress Nrf2 expression. Our study suggests that following TBI, iron is deposited in tissues not normally associated with iron storage, which may be a secondary mechanism of radiation-induced tissue injury.


Asunto(s)
Síndrome de Radiación Aguda/metabolismo , Médula Ósea/metabolismo , Rayos gamma/efectos adversos , Hematopoyesis/efectos de la radiación , Hierro/metabolismo , Traumatismos Experimentales por Radiación/metabolismo , Síndrome de Radiación Aguda/genética , Síndrome de Radiación Aguda/patología , Animales , Médula Ósea/patología , Captopril/farmacología , Eritrocitos/metabolismo , Eritrocitos/patología , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/efectos de la radiación , Hematopoyesis/efectos de los fármacos , Hematopoyesis/genética , Ratones , Ratones Transgénicos , Factor 2 Relacionado con NF-E2/biosíntesis , Factor 2 Relacionado con NF-E2/genética , Traumatismos Experimentales por Radiación/genética , Traumatismos Experimentales por Radiación/patología
9.
Acad Pathol ; 6: 2374289519886042, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31799382

RESUMEN

The following fictional case is intended as a learning tool within the Pathology Competencies for Medical Education (PCME), a set of national standards for teaching pathology. These are divided into three basic competencies: Disease Mechanisms and Processes, Organ System Pathology, and Diagnostic Medicine and Therapeutic Pathology. For additional information, and a full list of learning objectives for all three competencies, see http://journals.sagepub.com/doi/10.1177/2374289517715040. 1.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...