Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Brain Commun ; 6(4): fcae218, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39035420

RESUMEN

Amyloid-ß pathology and neurofibrillary tangles lead to glial activation and neurodegeneration in Alzheimer's disease. In this study, we investigated the relationships between the levels of amyloid-ß oligomers, amyloid-ß plaques, glial activation and markers related to neurodegeneration in the App NL-G-F triple mutation mouse line and in a knock-in line homozygous for the common human amyloid precursor protein (App hu mouse). The relationships between neuropathological features were characterized with immunohistochemistry and imaging mass cytometry. Markers assessing human amyloid-ß proteins, microglial and astrocytic activation and neuronal and synaptic densities were used in mice between 2.5 and 12 months of age. We found that amyloid-ß oligomers were abundant in the brains of App hu mice in the absence of classical amyloid-ß plaques. These brains showed morphological changes consistent with astrocyte activation but no evidence of microglial activation or synaptic or neuronal pathology. In contrast, both high levels of amyloid-ß oligomers and numerous plaques accumulated in App NL-G-F mice in association with substantial astrocytic and microglial activation. The increase in amyloid-ß oligomers over time was more strongly correlated with astrocytic than with microglia activation. Spatial analyses suggested that activated microglia were more closely associated with amyloid-ß oligomers than with amyloid-ß plaques in App NL-G-F mice, which also showed age-dependent decreases in neuronal and synaptic density markers. A comparative study of the two models highlighted the dependence of glial and neuronal pathology on the nature and aggregation state of the amyloid-ß peptide. Astrocyte activation and neuronal pathology appeared to be more strongly associated with amyloid-ß oligomers than with amyloid-ß plaques, although amyloid-ß plaques were associated with microglia activation.

2.
Acta Neuropathol ; 147(1): 78, 2024 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-38695952

RESUMEN

Aging is associated with cell senescence and is the major risk factor for AD. We characterized premature cell senescence in postmortem brains from non-diseased controls (NDC) and donors with Alzheimer's disease (AD) using imaging mass cytometry (IMC) and single nuclear RNA (snRNA) sequencing (> 200,000 nuclei). We found increases in numbers of glia immunostaining for galactosidase beta (> fourfold) and p16INK4A (up to twofold) with AD relative to NDC. Increased glial expression of genes related to senescence was associated with greater ß-amyloid load. Prematurely senescent microglia downregulated phagocytic pathways suggesting reduced capacity for ß-amyloid clearance. Gene set enrichment and pseudo-time trajectories described extensive DNA double-strand breaks (DSBs), mitochondrial dysfunction and ER stress associated with increased ß-amyloid leading to premature senescence in microglia. We replicated these observations with independent AD snRNA-seq datasets. Our results describe a burden of senescent glia with AD that is sufficiently high to contribute to disease progression. These findings support the hypothesis that microglia are a primary target for senolytic treatments in AD.


Asunto(s)
Enfermedad de Alzheimer , Senescencia Celular , Transcriptoma , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Humanos , Senescencia Celular/fisiología , Senescencia Celular/genética , Anciano , Masculino , Anciano de 80 o más Años , Femenino , Microglía/patología , Microglía/metabolismo , Encéfalo/patología , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuroglía/patología , Neuroglía/metabolismo
3.
Nat Commun ; 15(1): 2243, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472200

RESUMEN

Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased ß-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/metabolismo , Barrera Hematoencefálica/metabolismo , Células Endoteliales/metabolismo , Angiogénesis , Encéfalo/metabolismo , Péptidos beta-Amiloides/metabolismo , Perfilación de la Expresión Génica
4.
Nat Commun ; 14(1): 5247, 2023 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-37640701

RESUMEN

Microglial activation plays central roles in neuroinflammatory and neurodegenerative diseases. Positron emission tomography (PET) targeting 18 kDa Translocator Protein (TSPO) is widely used for localising inflammation in vivo, but its quantitative interpretation remains uncertain. We show that TSPO expression increases in activated microglia in mouse brain disease models but does not change in a non-human primate disease model or in common neurodegenerative and neuroinflammatory human diseases. We describe genetic divergence in the TSPO gene promoter, consistent with the hypothesis that the increase in TSPO expression in activated myeloid cells depends on the transcription factor AP1 and is unique to a subset of rodent species within the Muroidea superfamily. Finally, we identify LCP2 and TFEC as potential markers of microglial activation in humans. These data emphasise that TSPO expression in human myeloid cells is related to different phenomena than in mice, and that TSPO-PET signals in humans reflect the density of inflammatory cells rather than activation state.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Animales , Ratones , Enfermedades Neurodegenerativas/genética , Macrófagos , Células Mieloides , Flujo Genético
5.
Acta Neuropathol ; 143(1): 75-91, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34767070

RESUMEN

To better define roles that astrocytes and microglia play in Alzheimer's disease (AD), we used single-nuclei RNA-sequencing to comprehensively characterise transcriptomes in astrocyte and microglia nuclei selectively enriched during isolation post-mortem from neuropathologically defined AD and control brains with a range of amyloid-beta and phospho-tau (pTau) pathology. Significant differences in glial gene expression (including AD risk genes expressed in both the astrocytes [CLU, MEF2C, IQCK] and microglia [APOE, MS4A6A, PILRA]) were correlated with tissue amyloid or pTau expression. The differentially expressed genes were distinct between with the two cell types and pathologies, although common (but cell-type specific) gene sets were enriched with both pathologies in each cell type. Astrocytes showed enrichment for proteostatic, inflammatory and metal ion homeostasis pathways. Pathways for phagocytosis, inflammation and proteostasis were enriched in microglia and perivascular macrophages with greater tissue amyloid, but IL1-related pathway enrichment was found specifically in association with pTau. We also found distinguishable sub-clusters in the astrocytes and microglia characterised by transcriptional signatures related to either homeostatic functions or disease pathology. Gene co-expression analyses revealed potential functional associations of soluble biomarkers of AD in astrocytes (CLU) and microglia (GPNMB). Our work highlights responses of both astrocytes and microglia for pathological protein clearance and inflammation, as well as glial transcriptional diversity in AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Astrocitos/metabolismo , Encéfalo/patología , Microglía/metabolismo , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Femenino , Humanos , Masculino , Transcriptoma
6.
Blood ; 134(17): 1415-1429, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31501154

RESUMEN

We investigated and modeled the mesenchymal stromal cell (MSC) niche in adult acute lymphoblastic leukemia (ALL). We used gene expression profiling, cytokine/chemokine quantification, flow cytometry, and a variety of imaging techniques to show that MSCs, directly isolated from the primary bone marrow specimens of patients with ALL, frequently adopted an activated, cancer-associated fibroblast phenotype. Normal, primary human MSCs and the MSC cell line HS27a both were activated de novo, when exposed to the reactive oxygen species (ROS)-inducing chemotherapy agents cytarabine (AraC) and daunorubicin (DNR), a phenomenon blocked by the antioxidant N-acetyl cysteine. Chemotherapy-activated HS27a cells were functionally evaluated in a coculture model with ALL targets. Activated MSCs prevented therapy-induced apoptosis and death in ALL targets, via mitochondrial transfer through tunneling nanotubes (TNTs). Reduction of mitochondrial transfer by selective mitochondrial depletion or interference with TNT formation by microtubule inhibitors, such as vincristine (VCR), prevented the "rescue" function of activated MSCs. Corticosteroids, also a mainstay of ALL therapy, prevented the activation of MSCs. We also demonstrated that AraC (but not VCR) induced activation of MSCs, mitochondrial transfer, and mitochondrial mass increase in a murine NSG model of disseminated SEM cell-derived ALL, wherein CD19+ cells closely associated with nestin+ MSCs after AraC, but not in the other conditions. Our data propose a readily clinically exploitable mechanism for improving treatment of ALL, in which traditional ROS-inducing chemotherapies are often ineffective at eradicating residual disease, despite efficiently killing the bulk population.


Asunto(s)
Antineoplásicos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamiento farmacológico , Adulto , Anciano , Animales , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Células Cultivadas , Técnicas de Cocultivo , Citarabina/farmacología , Citarabina/uso terapéutico , Daunorrubicina/farmacología , Daunorrubicina/uso terapéutico , Femenino , Humanos , Masculino , Células Madre Mesenquimatosas/metabolismo , Ratones , Persona de Mediana Edad , Mitocondrias/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Adulto Joven
7.
J Cyst Fibros ; 13(5): 557-63, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24525080

RESUMEN

BACKGROUND: In cystic fibrosis (CF), cross-sectional studies have reported sputum matrix metalloproteinase (MMP)-9 to be elevated and negatively correlated with FEV1. This longitudinal study examined the association between MMP-9 and tissue inhibitors of metalloproteinases (TIMPs) to prognostic parameters in CF. METHOD: A cross-sectional survey of CF and control subjects; CF patients were followed up for a median of 49 months. MMP-9 and TIMP-1 and TIMP-2 were quantified in sputum and plasma. RESULTS: Seventy-three patients with CF, median age 22 years, and 40 controls were recruited. Fifty-three of these CF patients were followed up. Prospectively, in CF subjects, plasma MMP-9 activity was adversely associated with FEV1 (ß -1.15 (95% CI -2.10, -0.20), p = 0.019) and rate of FEV1 decline, and plasma TIMP-1 was adversely associated with mortality: hazard ratio 3.66 (1.91-7.04), p < 0.001. CONCLUSIONS: These associations further justify investigation of MMP-9 and TIMP-1 as biomarkers for short- to medium-term FEV1 decline and mortality in patients with CF.


Asunto(s)
Fibrosis Quística/enzimología , Metaloproteinasa 9 de la Matriz/análisis , Adolescente , Biomarcadores/análisis , Niño , Estudios Transversales , Fibrosis Quística/mortalidad , Fibrosis Quística/fisiopatología , Femenino , Volumen Espiratorio Forzado , Humanos , Masculino , Metaloproteinasa 9 de la Matriz/sangre , Esputo/enzimología , Inhibidor Tisular de Metaloproteinasa-1/análisis , Inhibidor Tisular de Metaloproteinasa-2/análisis , Adulto Joven
8.
Nurs Forum ; 42(4): 178-84, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17944698

RESUMEN

The development of e-learning as a teaching strategy in higher education has implications relating to student learning, the role of the teacher, and the institution of higher education. This paper debates the andragogical and pedagogical theories that support the development of e-learning to date. Leading to a discussion on how the process of e-learning may be contributing to the "stamp-me-smart" culture and restricting the development of critical thinking within student nurses. Concluding that e-learning has a top-down institution-led development that is contrary to the student-led development espoused by universities.


Asunto(s)
Instrucción por Computador/métodos , Bachillerato en Enfermería/organización & administración , Modelos Educacionales , Filosofía en Enfermería , Enseñanza/organización & administración , Adulto , Conducta Cooperativa , Tecnología Educacional , Docentes de Enfermería/organización & administración , Humanos , Relaciones Interprofesionales , Conocimiento , Rol de la Enfermera/psicología , Investigación en Educación de Enfermería , Cultura Organizacional , Aprendizaje Basado en Problemas , Teoría Psicológica , Psicología Educacional , Estudiantes de Enfermería/psicología , Pensamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA