Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(14)2022 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-35887236

RESUMEN

Panicle degeneration, sometimes known as abortion, causes heavy losses in grain yield. However, the mechanism of naturally occurring panicle abortion is still elusive. In a previous study, we characterized a mutant, apical panicle abortion1331 (apa1331), exhibiting abortion in apical spikelets starting from the 6 cm stage of panicle development. In this study, we have quantified the five phytohormones, gibberellins (GA), auxins (IAA), abscisic acid (ABA), cytokinins (CTK), and brassinosteroids (BR), in the lower, middle, and upper parts of apa1331 and compared these with those exhibited in its wild type (WT). In apa331, the lower and middle parts of the panicle showed contrasting concentrations of all studied phytohormones, but highly significant changes in IAA and ABA, compared to the upper part of the panicle. A comparative transcriptome of apa1331 and WT apical spikelets was performed to explore genes causing the physiological basis of spikelet abortion. The differential expression analysis revealed a significant downregulation and upregulation of 1587 and 978 genes, respectively. Hierarchical clustering of differentially expressed genes (DEGs) revealed the correlation of gene ontology (GO) terms associated with antioxidant activity, peroxidase activity, and oxidoreductase activity. KEGG pathway analysis using parametric gene set enrichment analysis (PGSEA) revealed the downregulation of the biological processes, including cell wall polysaccharides and fatty acids derivatives, in apa1331 compared to its WT. Based on fold change (FC) value and high variation in expression during late inflorescence, early inflorescence, and antherdevelopment, we predicted a list of novel genes, which presumably can be the potential targets of inflorescence development. Our study not only provides novel insights into the role of the physiological dynamics involved in panicle abortion, but also highlights the potential targets involved in reproductive development.


Asunto(s)
Oryza , Grano Comestible/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Inflorescencia/genética , Inflorescencia/metabolismo , Oryza/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
2.
J Virol Methods ; 276: 113760, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31712092

RESUMEN

Cotton production is widely effected by Cotton Leaf Curl Virus (CLCuV) in world posing serious losses to cotton yield.The CRT genes from CLCuV resistant G. arboreum and CLCuV susceptible G. hirsutum were cloned and sequenced to know the differences of protein composition in both species. Molecular techniques were used to isolate full length putative biotic stress resistance genes from G. arboreum besides the analysis of identified novel genes in model plant tobacco (Nicotiana tabacum) for resistance to cotton leaf curl disease complex. It was found that transgenic plants over expressing Hydroperoxidelyase (HPL) genes exhibited higher enzyme activity than wild type. In addition the genome sequence information was used for the purpose of gene isolation. Even for the enhanced expression of Calreticulin (CRT), AOS and HPL in G. hirsutum, it still showed susceptibility against CLCuV suggesting alternative genes and pathways involved for the expression of resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Genes de Plantas , Gossypium/genética , Nicotiana/virología , Enfermedades de las Plantas/virología , Gossypium/enzimología , Lipooxigenasa/genética , Luteoviridae/patogenicidad , Enfermedades de las Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/virología , Estrés Fisiológico
3.
AoB Plants ; 10(6): ply067, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30487965

RESUMEN

Cotton leaf curl virus (CLCuV) disease is one of the major limiting factors in cotton production, particularly in widely cultivated Gossypium hirsutum varieties that are susceptible to attack by this virus. Several approaches have been employed to explore putative resistance genes in another cotton species, G. arboreum. However, the exact mechanisms conferring disease resistance in cotton are still unknown. In the current study, we used various approaches to identify possible resistance genes against CLCuV infection. We report the identification and isolation of a set of genes involved in the resistance response to viral infestation. PCR products containing genomic DNA gave multiple amplifications with a single primer in most reactions, and 38 fragments were cloned from G. arboreum and G. hirsutum. The sequences of cloned fragments belonged to various pathway genes and uncharacterized proteins. However, five amplified fragments (RM1, RM6, RM8, RM12 and RM31) showed similarity with R genes. Maximum homology (94 %) was observed with G. raimondii toll/interleukin receptor-like protein. BLAST search showed the homology of all resistance gene analogues (RGAs) with more than one chromosome, and multiple hits were observed on each chromosome for each RGA. Expression analysis through RT-PCR identified variable expression levels of the different RGAs in all tested genotypes. The expression level of RGAs differed between symptomatic and asymptomatic plants, with the exception of RGA 395, whose expression level was the same in both diseased and healthy plants. Knowledge of the interaction of these genes with various cotton pathogens could be utilized to improve the resistance of susceptible G. hirsutum and other plant species.

4.
Front Plant Sci ; 9: 263, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29593751

RESUMEN

Humic substances (HSs) have considerable effects on soil fertility and crop productivity owing to their unique physiochemical and biochemical properties, and play a vital role in establishing biotic and abiotic interactions within the plant rhizosphere. A comprehensive understanding of the mode of action and tissue distribution of HS is, however, required, as this knowledge could be useful for devising advanced rhizospheric management practices. These substances trigger various molecular processes in plant cells, and can strengthen the plant's tolerance to various kinds of abiotic stresses. HS manifest their effects in cells through genetic, post-transcriptional, and post-translational modifications of signaling entities that trigger different molecular, biochemical, and physiological processes. Understanding of such fundamental mechanisms will provide a better perspective for defining the cues and signaling crosstalk of HS that mediate various metabolic and hormonal networks operating in plant systems. Various regulatory activities and distribution strategies of HS have been discussed in this review.

5.
Curr Issues Mol Biol ; 11(2): 101-10, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19430030

RESUMEN

The complexity of the wheat genome has delayed the development and application of molecular markers to this species and wheat now lies behind barley, maize and rice in marker development. However, improvements in marker detection systems and in the techniques used to identify markers linked to useful traits has allowed considerable advances to be made in recent years. To evaluate the genetic diversity 53 genotypes of Richard's selection, were studied at National Agriculture Reseach Center (NARC) Islamabad. The present study found that RAPD analysis is a valuable diagnostic tool. Different sets of RAPD primers were used to study the polymorphism at molecular level. Highest number of amplifications was shown by primer OpG-2 in Richard's material. Coefficient of similarity as well as genetic distances among these three sets of materials was calculated by using Unweighted Pair Group of Arithamatic Means (UPGMA) function (Nei and Li, 1979). The SHs derived genotypes of Richard's selection were highly polymorphic with a polymorphism percentage of 69.70 as compared to NUYT (rainfed) and elite Pakistani bread wheat varieties with a polymorphism of 44.44% and 61.11% respectively. Cluster analysis was done in which grouping of genotypes was done on the basis of genetic distances. Cluster analysis revealed that genotypes of Richard's genotypes are showing high level of among cultivar variation as compared to NUYT (Rainfed) and elite Pakistani drought tolerant bread wheat varieties. These genotypes were also phenotypically evaluated.


Asunto(s)
Sequías , Polimorfismo Genético , Estrés Fisiológico , Triticum/genética , Técnica del ADN Polimorfo Amplificado Aleatorio/métodos , Selección Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...