Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Infect Dis ; 224(8): 1432-1441, 2021 10 28.
Artículo en Inglés | MEDLINE | ID: mdl-33617646

RESUMEN

BACKGROUND: Cerebral malaria (CM) pathogenesis remains incompletely understood. Having shown low systemic levels of tetrahydrobiopterin (BH4), an enzymatic cofactor for neurotransmitter synthesis, we hypothesized that BH4 and BH4-dependent neurotransmitters would likewise be low in cerebrospinal fluid (CSF) in CM. METHODS: We prospectively enrolled Tanzanian children with CM and children with nonmalaria central nervous system conditions (NMCs). We measured CSF levels of BH4, neopterin, and BH4-dependent neurotransmitter metabolites, 3-O-methyldopa, homovanillic acid, and 5-hydroxyindoleacetate, and we derived age-adjusted z-scores using published reference ranges. RESULTS: Cerebrospinal fluid BH4 was elevated in CM (n = 49) compared with NMC (n = 51) (z-score 0.75 vs -0.08; P < .001). Neopterin was increased in CM (z-score 4.05 vs 0.09; P < .001), and a cutoff at the upper limit of normal (60 nmol/L) was 100% sensitive for CM. Neurotransmitter metabolite levels were overall preserved. A higher CSF BH4/BH2 ratio was associated with increased odds of survival (odds ratio, 2.94; 95% confidence interval, 1.03-8.33; P = .043). CONCLUSION: Despite low systemic BH4, CSF BH4 was elevated and associated with increased odds of survival in CM. Coma in malaria is not explained by deficiency of BH4-dependent neurotransmitters. Elevated CSF neopterin was 100% sensitive for CM diagnosis and warrants further assessment of its clinical utility for ruling out CM in malaria-endemic areas.


Asunto(s)
Biopterinas/líquido cefalorraquídeo , Malaria Cerebral/mortalidad , Neopterin/líquido cefalorraquídeo , Neurotransmisores/líquido cefalorraquídeo , Pterinas/líquido cefalorraquídeo , Biopterinas/análogos & derivados , Enfermedades del Sistema Nervioso Central/líquido cefalorraquídeo , Niño , Preescolar , Femenino , Ácido Homovanílico/líquido cefalorraquídeo , Humanos , Ácido Hidroxiindolacético/líquido cefalorraquídeo , Lactante , Malaria Cerebral/líquido cefalorraquídeo , Masculino , Estudios Prospectivos , Valores de Referencia , Tanzanía/epidemiología , Tirosina/análogos & derivados
2.
Infect Immun ; 87(4)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30718287

RESUMEN

The low bioavailability of nitric oxide (NO) and its precursor, arginine, contributes to the microvascular pathophysiology of severe falciparum malaria. To better characterize the mechanisms underlying hypoargininemia in severe malaria, we measured the plasma concentrations of amino acids involved in de novo arginine synthesis in children with uncomplicated falciparum malaria (UM; n = 61), children with cerebral falciparum malaria (CM; n = 45), and healthy children (HC; n = 109). We also administered primed infusions of l-arginine uniformly labeled with 13C6 and 15N4 to 8 children with severe falciparum malaria (SM; age range, 4 to 9 years) and 7 healthy children (HC; age range, 4 to 8 years) to measure the metabolic flux of arginine, hypothesizing that arginine flux is increased in SM. Using two different tandem mass spectrometric methods, we measured the isotopic enrichment of arginine in plasma obtained at 0, 60, 90, 120, 150, and 180 min during the infusion. The plasma concentrations of glutamine, glutamate, proline, ornithine, citrulline, and arginine were significantly lower in UM and CM than in HC (P ≤ 0.04 for all pairwise comparisons). Of these, glutamine concentrations were the most markedly decreased: median, 457 µM (interquartile range [IQR], 400 to 508 µM) in HC, 300 µM (IQR, 256 to 365 µM) in UM, and 257 µM (IQR, 195 to 320 µM) in CM. Arginine flux during steady state was not significantly different in SM than in HC by the respective mass spectrometric methods: 93.2 µmol/h/kg of body weight (IQR, 84.4 to 129.3 µmol/h/kg) versus 88.0 µmol/h/kg (IQR, 73.0 to 102.2 µmol/h/kg) (P = 0.247) by the two mass spectrometric methods in SM and 93.7 µmol/h/kg (IQR, 79.1 to 117.8 µmol/h/kg) versus 81.0 µmol/h/kg (IQR, 75.9 to 88.6 µmol/h/kg) (P = 0.165) by the two mass spectrometric methods in HC. A limited supply of amino acid precursors for arginine synthesis likely contributes to the hypoargininemia and NO insufficiency in falciparum malaria in children.


Asunto(s)
Arginina/sangre , Malaria Falciparum/sangre , Plasmodium falciparum/fisiología , Arginina/química , Niño , Preescolar , Estudios Transversales , Femenino , Glutamina/sangre , Glutamina/química , Humanos , Lactante , Malaria Falciparum/parasitología , Masculino
3.
Sci Rep ; 6: 29151, 2016 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-27385484

RESUMEN

We earlier established that nitric oxide (NO) is protective against severe malaria and that arginine and NO levels are reduced in malaria patients. We now show that an M2-like blood monocyte phenotype is significantly associated with hypoargininemia, NO insufficiency, and disease severity in Tanzanian children with falciparum malaria. Compared to control children (n = 106), children with moderately severe (n = 77) and severe falciparum malaria (n = 129) had significantly higher mononuclear cell arginase 1 mRNA, protein, and enzyme activity; lower NOS2 mRNA; lower plasma arginine; and higher plasma IL-10, IL-13, and IL-4. In addition, monocyte CD206 and CD163 and plasma soluble CD163 were elevated. Multivariate logistic regression analysis revealed a significant correlation of risk of severe malaria with both plasma IL-10 and soluble CD163 levels. Monocyte M2 skewing likely contributes to NO bioinsufficiency in falciparum malaria in children. Treatments that reverse the M2 polarization may have potential as adjunctive treatment for malaria.


Asunto(s)
Polaridad Celular , Malaria Falciparum/patología , Monocitos/patología , Óxido Nítrico/metabolismo , Índice de Severidad de la Enfermedad , Antígenos CD/metabolismo , Arginasa/sangre , Arginina/sangre , Biomarcadores/sangre , Quimiocinas/sangre , Niño , Preescolar , Femenino , Humanos , Malaria Falciparum/sangre , Masculino , Modelos Biológicos , Fagocitos/metabolismo
4.
J Infect Dis ; 210(6): 913-22, 2014 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-24620026

RESUMEN

BACKGROUND: Nitric oxide (NO) bioavailability is impaired in children and adults with severe falciparum malaria (SM). Asymmetric-dimethylarginine (ADMA) limits NO production by inhibiting NO synthase and is increased in adult SM. The role of ADMA in the pathogenesis of childhood SM is unknown. METHODS: We studied Tanzanian children ages 4-8 years with malaria. Plasma levels of arginine, arginase, cell-free hemoglobin, ADMA, symmetric-dimethylarginine (SDMA), histidine-rich protein-2, and angiopoietin-2 were measured. RESULTS: ADMA was low in children with SM relative to controls. Nevertheless, arginine and arginine:ADMA ratios were very low in SM. SDMA was high in children with SM. With treatment, arginine and the arginine:ADMA ratio normalized, but SDMA did not. Arginine:ADMA ratios, but not arginine, were significantly and inde-pendent-ly inversely associated with lactate and angiopoietin-2. Plasma arginase was not elevated in those with malaria, and plasma free hemoglobin was elevated only in patients with cerebral malaria. CONCLUSIONS: In contrast to adults, plasma ADMA is reduced in SM in children, but hypoargininemia is more severe. Arginine bioavailability (reflected by low arginine:ADMA ratios) is therefore comparably low in SM in children as in adults. Therapies to increase NO bioavailability in malaria may be useful as adjunctive treatment of severe malaria in children.


Asunto(s)
Arginina/análogos & derivados , Malaria Falciparum/metabolismo , Óxido Nítrico/biosíntesis , Enfermedad Aguda , Arginasa/sangre , Arginina/sangre , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Hemoglobinas/análisis , Humanos , Malaria Falciparum/enzimología , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...